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Prefácio da Coleção
Completa

É com grande satisfação que apresentamos a coleção “Matemática
para Ciências”, composta por três volumes cuidadosamente
organizados para oferecer uma formação consistente, clara e
acessível em matemática aplicada às Ciências. Esta coleção foi
concebida com atenção especial aos estudantes de cursos fora
das Ciências Exatas, reconhecendo a matemática como uma
ferramenta essencial para o progresso acadêmico e investigativo
em suas respectivas áreas.

Reconhecemos que, para muitos leitores, até mesmo conceitos
mais básicos da matemática podem se apresentar como um
desafio abstrato. Contudo, quando a aprendizagem é conduzida
por abordagens adequadas, a matemática se revela acessível e
aplicável, permitindo também que sua dimensão estética e seu
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valor científico sejam plenamente apreciados.

A Estrutura da Coleção:

Cada volume da coleção foi concebido de forma progressiva e
complementar, de modo a proporcionar ao leitor um percurso
natural de aprendizado

• Volume 1 – Funções: Introdução rigorosa aos conceitos
fundamentais de funções, abrangendo definições formais,
domínios, contradomínios, imagens e propriedades estrutu-
rais, constituindo a base conceitual indispensável para o
desenvolvimento da matemática aplicada e teórica.

• Volume 2 – Álgebra Linear e Vetores: Apresentação
sistemática dos conceitos de vetores, matrizes, sistemas
lineares e transformações lineares, que estabelecem a
estrutura algébrica e geométrica fundamental para a análise
de problemas multivariados e para aplicações em diferentes
domínios científicos e de engenharia.

• Volume 3 – Cálculo em uma Variável: Apresentação
rigorosa dos fundamentos do cálculo diferencial e integral
em uma variável, abordando limites, continuidade, deriva-
das e integrais, com ênfase tanto na formalização teórica
quanto nas técnicas de cálculo e em suas aplicações à mo-
delagem de fenômenos reais.
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Abordagem Didática e Aplicada:

Nos três volumes, adotamos uma apresentação clara, com
exemplos contextualizados e exercícios práticos, sempre buscando
aproximar a teoria da realidade. Em vez de tratar a matemática
apenas como abstração, privilegiamos a sua utilidade como
linguagem universal para compreender, descrever e prever
fenômenos em contextos científicos, tecnológicos e sociais.

A Quem se Destina:

Esta coleção destina-se a estudantes de Matemática, Ciências
Naturais, Biológicas, Sociais Aplicadas e Tecnológicas, bem
como a todos que desejam desenvolver uma compreensão sólida
e aplicada da matemática. Se você busca um aprendizado
consistente, do fundamental às aplicações avançadas, esta obra
foi feita para você.

Recursos e Apoio ao Leitor:

Os volumes contam com exercícios, exemplos resolvidos e seções
de reforço conceitual, concebidos para apoiar diferentes estilos de
aprendizagem. O objetivo é tornar o estudo não apenas possível,
mas também prazeroso e enriquecedor.

Sua Jornada Matemática:

Esta coleção foi elaborada para acompanhar o leitor em seu
processo de aprendizagem, conduzindo-o gradualmente dos
fundamentos introdutórios ao uso de ferramentas matemáticas
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de maior complexidade, que poderão integrar-se de forma natural
à sua formação acadêmica e à sua prática profissional.

Espera-se que o material aqui apresentado contribua para
o fortalecimento da compreensão conceitual, para o desenvolvi-
mento da confiança no uso da matemática e para o incentivo à
exploração de suas aplicações e potencialidades.

Boa jornada matemática!

Cleyton Natanael Lopes de Carvalho Cunha
Pitágoras Pinheiro de Carvalho

Olimpio Pereira de Sá Neto
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Resumo do Volume 1

O Volume 1 – Funções, da coleção Matemática para Ciências,
apresenta uma introdução sólida e acessível aos conceitos
fundamentais de funções, que constituem a base da matemática
aplicada. Com abordagem clara e didática, este volume
explora o universo das funções, suas propriedades, classificações
e aplicações, proporcionando ao leitor tanto a compreensão
teórica quanto a perspectiva prática de seu uso na modelagem
matemática.

O livro inicia apresentando o conceito de função, enfatizando
sua importância na descrição de relações matemáticas e fenô-
menos do mundo real. São abordados tópicos como domínio,
imagem, funções elementares, compostas e inversas, com exem-
plos que mostram como essas ideias se conectam com problemas
concretos em Ciências, Engenharia, Economia e Biologia.

Além da fundamentação teórica, o volume dedica atenção
especial à interpretação gráfica das funções, possibilitando ao
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Resumo do Volume 1

leitor a visualização das relações, a identificação de tendências
e a compreensão do comportamento funcional em diferentes
contextos. Funções polinomiais, exponenciais, logarítmicas e
trigonométricas são analisadas detalhadamente, evidenciando
suas aplicações práticas e seu papel como alicerce para conceitos
mais avançados, que serão abordados nos volumes subsequentes
da coleção.

Exercícios e exemplos contextualizados e seções de reforço
conceitual ajudam a consolidar o aprendizado, tornando o estudo
mais interativo e efetivo. O objetivo é que o leitor não apenas
memorize conceitos, mas desenvolva intuição e habilidade para
aplicar funções em situações variadas.

Em resumo, este volume oferece uma introdução completa e
envolvente ao mundo das funções, preparando o terreno para o
estudo de Álgebra Linear, Cálculo e Equações Diferenciais nos
volumes posteriores. É uma obra indispensável para estudantes e
profissionais que buscam construir uma base matemática sólida
e aplicada, essencial para compreender e modelar fenômenos
científicos de maneira eficaz.

Por fim, destaca-se que todas as figuras apresentadas neste
volume foram elaboradas com o pacote TikZ do LATEX, contando
com o apoio de ferramentas de Inteligência Artificial para sua
concepção e refinamento.

xii



Agradecimentos

Agradecimentos 1

A elaboração desta coleção representou um percurso ao mesmo
tempo desafiador e profundamente enriquecedor. Cada página
foi escrita com o propósito de tornar a Matemática mais clara e
acessível a estudantes de diferentes áreas do conhecimento.

Registro meu sincero agradecimento ao Prof. Olimpio Pereira
de Sá Neto pelo convite para integrar este projeto, cuja relevância
para o ensino da Matemática em contextos diversos considero
indiscutível.

Sou especialmente grato à minha esposa, Carla Oliveira,
pela paciência, compreensão e incentivo constantes, que me
permitiram dedicar o tempo e a energia necessários à construção
desta obra. Ao meu filho, Matheus Oliveira Cunha, agradeço pela
inspiração diária, lembrando-me sempre do valor da curiosidade,

xiii



Agradecimentos

da perseverança e da alegria no aprendizado. Espero que esta
coleção possa, no futuro, também contribuir para sua própria
caminhada acadêmica.

Por fim, estendo minha gratidão a todos que, de forma
direta ou indireta, colaboraram para a realização deste trabalho.
Que ele possa cumprir seu propósito maior: apoiar, inspirar
e fortalecer a jornada daqueles que veem na Matemática não
apenas um desafio, mas também uma ferramenta essencial para
compreender e transformar o mundo.

Cleyton Natanael Lopes de Carvalho Cunha

Agradecimentos 2

Expresso minha profunda gratidão aos meus pais José Raimundo
de Carvalho e Maria Roci Guedes de Carvalho, cujo amor,
dedicação e exemplo constante moldaram completamente minha
trajetória de vida pessoal e acadêmica. O apoio, presença e
incentivo foram fundamentais para que eu pudesse alcançar
meus sonhos e dedicar-me à ciência e à educação com confiança.

Dedico este livro à minha filha Alícia Erhart, cuja descoberta
dos primeiros passos na matemática desperta em mim, todos
os dias, inspiração e entusiasmo como educador. Espero que a
curiosidade e a ludicidade com que exploramos juntos o conheci-
mento matemático básico iluminem sempre seu aprendizado e
sua trajetória de vida.

Pitágoras Pinheiro de Carvalho

xiv



Agradecimentos 3

Agradecimentos 3

Quero expressar meus sinceros agradecimentos a todas as pessoas
que contribuíram para a realização desta obra, mas especialmente
aos que foram fundamentais em minha jornada.

Aos meus pais, José Raimundo Lima Ferro (in memoriam)
e Sara Silva Sá Ferro, que foram fontes inesgotáveis de apoio,
sabedoria e inspiração. Mesmo na ausência física de meu pai,
sua presença espiritual continua a me guiar. Agradeço por todos
os valores e lições que moldaram meu caráter e influenciaram
diretamente a criação deste trabalho.

Aos meus filhos, Maria Rita Serena Cerqueira de Sá e José
Luiz Olímpio Cerqueira de Sá, que são a razão pela qual busco
ser cada vez melhor como homem e espírito. Suas presenças
são a fonte constante de força e energia que impulsionam minha
jornada. Este trabalho é dedicado a vocês, como uma expressão
de gratidão e amor profundo.

A minha esposa Rita de Cássia Cerqueira Viana por toda
convivencia e evolução compartilhada.

Registro meu sincero agradecimento ao Prof. Cleyton
Natanael Lopes de Carvalho Cunha e Pitágoras Pinheiro de
Carvalho pelo aceite para integrar este desafio na elaboração
desta obra.

Que esta obra, permeada de gratidão e dedicação, possa
contribuir de alguma forma para o enriquecimento intelectual de
todos aqueles que a lerem.

Olimpio Pereira de Sá Neto

xv





Sumário

Prefácio da Coleção Completa vii

Resumo do Volume 1 xi

Agradecimentos xiii
Agradecimentos 1 . . . . . . . . . . . . . . . . . . . xiii
Agradecimentos 2 . . . . . . . . . . . . . . . . . . . xiv
Agradecimentos 3 . . . . . . . . . . . . . . . . . . . xv

Sumário xvii

Lista de Figuras xix

1 Números e Funções 1
1.1 Números Reais . . . . . . . . . . . . . . . . . . 1
1.2 Funções Reais de Variável Real . . . . . . . . 27

xvii



Sumário

1.3 Funções Monótonas . . . . . . . . . . . . . . . 46
1.4 Funções Limitadas . . . . . . . . . . . . . . . 52
1.5 Operações com Funções . . . . . . . . . . . . . 56
1.6 Função Inversa . . . . . . . . . . . . . . . . . . 59
1.7 Exercícios de Fixação . . . . . . . . . . . . . . 66

2 Funções Polinomiais 81
2.1 Função Afim . . . . . . . . . . . . . . . . . . . 86
2.2 Função Linear . . . . . . . . . . . . . . . . . . 93
2.3 Função Quadrática . . . . . . . . . . . . . . . 98
2.4 Exercícios de Fixação . . . . . . . . . . . . . . 106

3 Funções Exponenciais e Logarítmicas 113
3.1 Exercícios de Fixação . . . . . . . . . . . . . . 121

4 Funções Periódicas 129
4.1 Triângulo Retângulo . . . . . . . . . . . . . . 131
4.2 Circunferência . . . . . . . . . . . . . . . . . . 140
4.3 Funções Trigonométricas . . . . . . . . . . . . 142
4.4 Exercícios de Fixação . . . . . . . . . . . . . . 146

Referências 149

xviii



Lista de Figuras

1.1 Reta orientada para direita (usual). . . . . . . . . 3
1.2 Sentido de percurso de A para B. . . . . . . . . . . 3
1.3 Eixo x. . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Números inteiros. . . . . . . . . . . . . . . . . . . . 4
1.5 Números racionais . . . . . . . . . . . . . . . . . . 8
1.6 Diagonal com medida não racional. . . . . . . . . . 8
1.7 Reta real. . . . . . . . . . . . . . . . . . . . . . . . 10
1.8 Interpretação geométrica de |x|. . . . . . . . . . . . 20
1.9 Interpretação geométrica do conjunto S. . . . . . . 22
1.10 Distância entre A e B. . . . . . . . . . . . . . . . . 22
1.11 Intervalo fechado e limitado. . . . . . . . . . . . . . 24
1.12 Intervalo (limitado) semiaberto à direita. . . . . . 24
1.13 Intervalo (limitado) semiaberto à esquerda. . . . . 24
1.14 Intervalo aberto e limitado. . . . . . . . . . . . . . 24
1.15 Intervalo fechado e não limitado superiormente. . . 25

xix



Lista de Figuras

1.16 Intervalo fechado e não limitado inferiormente. . . 25
1.17 Intervalo aberto e não limitado superiormente. . . 25
1.18 Intervalo aberto e não limitado inferiormente. . . . 25
1.19 Reta real. . . . . . . . . . . . . . . . . . . . . . . . 26
1.20 Conjunto S1. . . . . . . . . . . . . . . . . . . . . . 26
1.21 Conjunto S2. . . . . . . . . . . . . . . . . . . . . . 27
1.22 Representação geométrica da solução. . . . . . . . 27
1.23 Corresponência entre conjuntos com diagrama de

Venn. . . . . . . . . . . . . . . . . . . . . . . . . . 33
1.24 Plano Coordenado. . . . . . . . . . . . . . . . . . . 36
1.25 Quadrantes do plano coordenado. . . . . . . . . . . 37
1.26 Gráfico de y = f(x). . . . . . . . . . . . . . . . . . 38
1.27 Gráfico de y = 2x + 1. . . . . . . . . . . . . . . . . 39
1.28 Gráfico de y = x2. . . . . . . . . . . . . . . . . . . 40
1.29 Distância no plnao coordenado. . . . . . . . . . . . 41
1.30 Gráfico de y =

√
1 − x2. . . . . . . . . . . . . . . . 42

1.31 Gráfico de g(n) = 2n + 1, com n ∈ N. . . . . . . . 43
1.32 Teste da reta vertical. . . . . . . . . . . . . . . . . 44
1.33 Exemplos de representações gráficas . . . . . . . . 45
1.34 Função Crescente. . . . . . . . . . . . . . . . . . . 47
1.35 Função Não-Decrescente . . . . . . . . . . . . . . . 48
1.36 Gráfico de y = f(x). . . . . . . . . . . . . . . . . . 49
1.37 Função Decrescente . . . . . . . . . . . . . . . . . 50
1.38 Função Não-Crescente . . . . . . . . . . . . . . . . 51
1.39 Funções limitadas. . . . . . . . . . . . . . . . . . . 53
1.40 Gráfico de y = 1

x
. . . . . . . . . . . . . . . . . . . . 54

1.41 Máximos e mínimos de f . . . . . . . . . . . . . . . 56
1.42 Diagrama associado a função composta g ◦ f . . . . 58

xx



Lista de Figuras

1.43 Gráfico da função inversa. . . . . . . . . . . . . . . 65

2.1 Gráfico de funções polinomiais. . . . . . . . . . . . 84
2.2 Gráfico da função afim y = ax + b. . . . . . . . . . 87
2.3 Gráfico da função afim y = 2x + 3. . . . . . . . . . 89
2.4 Gráfico da função afim y = −x + 5. . . . . . . . . . 89
2.5 Estudo do sinal de uma função f . . . . . . . . . . . 91
2.6 Estudo do sinal da função afim. . . . . . . . . . . . 92
2.7 Estudo do sinal para o caso ∆ < 0. . . . . . . . . . 103
2.8 Estudo do sinal para o caso ∆ = 0. . . . . . . . . . 104
2.9 Estudo do sinal para o caso ∆ > 0. . . . . . . . . . 105

3.1 Gráfico da função exponencial. . . . . . . . . . . . 116

4.1 Gráfico da função f(x) = x − [x]. . . . . . . . . . . 130
4.2 Gráfico da função g. . . . . . . . . . . . . . . . . . 130
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CAPÍTULO 1

Números e Funções

1.1 Números Reais

O conceito de número surgiu da necessidade humana de contar
e medir elementos do cotidiano. Inicialmente, isso era feito de
forma prática e intuitiva, com o uso de marcas, símbolos e obje-
tos simples. Com o tempo, surgiram os números naturais e os
primeiros sistemas de numeração, como o sexagesimal dos babilô-
nios e o decimal dos egípcios. No entanto, o entendimento formal
do que é um número só começou a ser desenvolvido no século
XIX, quando matemáticos como Cauchy, Cantor, Grassmann,
Dedekind e Peano passaram a buscar uma fundamentação lógica
para os conceitos matemáticos, transformando a matemática em
uma ciência mais rigorosa. Nesse sentido, o sistema numérico
usual consiste essencialmente em um conjunto, cujos elementos
são chamados de números reais, e em duas operações denomi-
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1. Números e Funções

nadas adição (+) e multiplicação (·). A seguir aprofunda-se
um pouco nas características e propriedades de tais números.

Seguindo o roteiro histórico acima os primeiros números que
conhecemos são os chamados números naturais (N), seguindo
com os números inteiros (Z), os números racionais (Q) e os
números reais (R).

O conjunto dos números naturais é formado pelos números
associados ao processo de contagem, ou seja,

N = {1, 2, 3, 4, · · · },

onde cada n ∈ N, com n ̸= 1, pode ser obtido a partir de 1
(“um”) tomando-se o seu sucessor, ou seja, n = p+1, para algum
p ∈ N.

O conjunto dos números inteiros consiste na união do conjunto
dos números naturais, dos seus respectivos simétricos aditivos
(−n), e do zero (0),

Z = {· · · , −3, −2, −1, 0, 1, 2, 3, · · · } = −N ∪ {0} ∪ N.

Aqui surge a noção de números positivos (“à direita do zero”)
e negativos (“à esquerda do zero”), bem como a operação de
subtração: a − b = a + (−b).

Os números positivos e negativos estão relacionados com a
representação geométrica de Z conforme apresentado a seguir.

Uma reta x é orientada quando sobre ela se escolheu um
sentido de percurso dito positivo (ver Figura 1.1). O sentido
oposto é denominado negativo.

2



1.1. Números Reais

Figura 1.1: Reta orientada para direita (usual).

x

Sejam A e B pontos na reta orientada x. Dizemos que B
está à direita de A (ou que A está à esquerda de B) quando o
sentido de percurso de A para B coincide com o sentido positivo
escolhido na reta x.

Figura 1.2: Sentido de percurso de A para B.

x
A B

Um eixo é uma reta orientada na qual é fixado um ponto O,
chamado origem.

Figura 1.3: Eixo x.

x
O

Dessa forma, dado um eixo x a origem O faz-se corresponder
o número zero e a cada ponto A do eixo (à direita ou à esquerda
de O), corresponde um único número inteiro a, chamado de
coordenada do ponto A no eixo x.

Definição 1.1. Seja a ∈ Z e A ∈ x seu respectivo ponto sobre
o eixo x. Dizemos que a é positivo, denotando por a > 0, se
A está a direita da origem. Do mesmo modo, diz-se que a é
negativo, denotando por a < 0, se A está a esquerda da origem.

3



1. Números e Funções

O símbolo < é denominado “é menor do que” e o símbolo >
é denominado “é maior do que”.

Definição 1.2. Sejam a, b ∈ Z e A, B seus respectivos pontos
sobre o eixo x. Diz-se que a < b em Z se A está à esquerda de
B.

Tal relação define uma ordem estrita em Z e formaliza a
interpretação geométrica abaixo.

Figura 1.4: Números inteiros.

Z
-3 -2 -1 0 1 2 3

A ordem estrita definida acima pode ser caracterizada como
segue

a < b ⇔ b − a > 0 ⇔ a − b < 0,

ou
a < b ⇔ existe c > 0 tal que b = a + c.

Definição 1.3. Dados a, b ∈ Z, diz-se que a ≤ b se a < b ou
a = b.

Com respeito a relação ≤ destacamos três fatos importantes:

• Se a ≤ b então a + c ≤ b + c, para todo c ∈ Z.

• Se a ≤ b então ac ≤ bc, para todo c ∈ Z com c > 0.

• Se a ≤ b então bc ≤ ac, para todo c ∈ Z, com c < 0.

4



1.1. Números Reais

Observação 1.1. Convenciona-se que α < β < γ abrevia α <
β e β < γ. Do mesmo modo, α ≤ β ≤ γ significa
α ≤ β e β ≤ γ e α ≤ β < γ significa α ≤ β e β < γ.

Por sua vez, o conjunto dos números racionais consiste nas
chamadas frações, associadas a medições e formadas a partir
da operação de divisão entre dois números inteiros m e n,
com n ̸= 0. Tal operação é definida por m ÷ n = m · n−1, onde
n−1 representa o simétrico multiplicativo ou inverso de n. A
existência de n−1 é a essência do conjunto Q. Por simplicidade,
denota-se m ÷ n = m

n
= m/n e n−1 = 1

n
. Dessa forma tem-se

m

n
+ p

q
= mq + np

nq
(n ̸= 0, q ̸= 0),

m

n
− p

q
= mq − np

nq
(n ̸= 0, q ̸= 0),

m

n
· p

q
= m · p

n · q
(n ̸= 0, q ̸= 0),

m/n

p/q
= m

n
· q

p
(n ̸= 0, p ̸= 0, q ̸= 0).

Na fração m

n
, com n ̸= 0, o inteiro m é dito numerador e o

inteiro não nulo n é dito denominador da fração.
Note que a “construção” acima garante que

N ⊂ Z ⊂ Q.

Além disso, Q munido das operações acima possui as proprieda-
des seguintes:

5



1. Números e Funções

(A1) Associativa: a + b + c = a + (b + c) = (a + b) + c, para
quaisquer a, b, c ∈ Q;

(A2) Comutativa: a + b = b + a, para quaisquer a, b ∈ Q;

(A3) Elemento neutro: a + 0 = 0 + a = a, para todo a ∈ Q;

(A4) Elemento simétrico: para todo a ∈ Q existe a∗ ∈ Q, tal
que a + a∗ = a∗ + a = 0. Nesse caso, tem-se a∗ = −a;

(M1) Associativa: a · b · c = a · (b · c) = (a · b) · c, para quaisquer
a, b, c ∈ Q;

(M2) Comutativa: a · b = b · a, para quaisquer a, b ∈ Q;

(M3) Elemento neutro: a · 1 = 1 · a = a, para todo a ∈ Q;

(M4) Elemento inverso: para todo a ∈ Q, a ̸= 0, existe a† ∈ Q,
tal que a · a† = a† · a = 1. Nesse caso, tem-se a† = 1

a
;

(D) Distributiva: a · (b + c) = a · b + a · c, para quaisquer
a, b, c ∈ Q,

das quais seguem as demais propriedades algébricas.

Exemplo 1.1.1. Uma importante aplicação das propriedades
acima, é o processo usual de multiplicação entre dois números.
Para fixar ideia, considere a multiplicação abaixo

23
× 11

23
+23

253

6



1.1. Números Reais

Formalmente temos:

23 · 11 = 23 · (1 · 10 + 1)
= 23 · 1 · 10 + 23 · 1
= 23 · 10 + 23
= 230 + 23
= 253.

Assim, transladar 23 para esquerda na conta organizada
verticalmente, equivale a escrever 23 · 10.

A relação de ordem apresentada acima para os números
inteiros continua valendo para os números racionais com a
adição de novas propriedades. Em especial, vale para a = m/n,
b = p/q ∈ Q,

m

n
≤ p

q
⇔ mq ≤ np.

Assim, os números racionais constituem um conjunto
ordenado, isto é, para cada par de números a, b ∈ Q, uma
e somente uma das relações abaixo ocorre

a < b, a = b, a > b.

Tal resultado é denomidado lei da tricotomia. Temos então
uma representação geométrica análoga para o conjunto dos
números racionais conforme a Figura 1.5.

Assim, por sucessivas ampliações do conceito de número
chegou-se ao conjunto ordenado Q, o qual estão bem definidas as
quatro operações básicas da aritmética e N ⊂ Z ⊂ Q. Com isso
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1. Números e Funções

Figura 1.5: Números racionais

Q
-2 -1 0 1 2− 1

2
1
2

3
2

pensou-se que o conjunto Q supria completamente os problemas
envolvendo contagens e/ou medições. No entanto isso não
ocorreu. Coube à escola pitagórica a descoberta de um segmento
cuja medida não estava associada a um número racional.

Exemplo 1.1.2. Não existe d ∈ Q que represente o comprimento
da diagonal de um quadrado de lado 1. Ou seja, em vista do
Teorema de Pitágoras, da relação de divisibilidade e argumento
de redução ao absurdo, não existe um número d ∈ Q tal que
d2 = 2. Portanto, d ̸∈ Q.

Figura 1.6: Diagonal com medida não racional.

1

11 d =?

A B

CD

8



1.1. Números Reais

Exemplo 1.1.3. Também não existe C ∈ Q que represente o
comprimento de uma circunferência de raio r ∈ Q.

Dessa forma, entende-se como o conjunto dos números reais
o conjunto

R = Q ∪ Qc,

onde Qc representa o conjunto dos números irracionais. Nesse
novo conjunto, o número d dado no Exemplo 1.1.2 representa a
raiz quadrada de 2, sendo caracterizado pela identidade

d =
√

2 ⇔ d2 = 2.

Em geral, para cada número real α > 0 e n ≥ 2, com n ∈ N,
existe um único β > 0 tal que βn = α. Assim, define-se

β = n
√

α ⇔ βn = α.

Além disso, um número irracional é caracterizado como um
número real que não pode ser representado na forma de fração.

Exemplo 1.1.4. Os exemplos mais conhecidos de números
irracionais são: π ≈ 3, 14159 (“pi”), e ≈ 2, 71828 (número de
Euler),

√
2,

√
3, √

p onde p ∈ N não é um quadrado perfeito.

Em R são bem definidas as quatro operações básicas: +, −,
· e ÷, bem como as relações de ordem <, >, ≤ e ≥ destaca-
das acima. Além disso, são satisfeitas todas as propriedades
mencionadas anteriormente. Nesse contexto, a representação
geométrica de R é dita reta real.
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1. Números e Funções

Figura 1.7: Reta real.

R
−3 −2 −1 0 1 2 3− 1

2
1
2

3
2

√
2 π

Observação 1.2. À medida que a matemática foi se desenvol-
vendo, surgiram situações em que os números naturais, inteiros e
até os reais já não eram suficientes para resolver certos problemas.
Um exemplo clássico é a equação x2 + 1 = 0, que não possui
solução no conjunto dos números reais. Para lidar com esse tipo
de questão, os matemáticos introduziram uma nova ideia: os
números complexos (C). Os números complexos estendem os
números reais ao incluir uma unidade imaginária, representada
por i, onde i2 = −1. Um número complexo tem a forma a + bi,
onde a e b são números reais. Embora inicialmente tenham sido
vistos com desconfiança por parecerem “números fictícios”, os
complexos provaram ser extremamente úteis em diversas áreas da
ciência e engenharia, como na eletricidade, na mecânica quântica
e no processamento de sinais.

Com o tempo, a busca por representar e manipular fenô-
menos ainda mais complexos levou à criação dos quatérnios,
desenvolvidos por William Rowan Hamilton em 1843. Os qua-
térnios podem ser vistos como uma generalização dos números
complexos, formados por quatro componentes:

q = a + bi + cj + dk,

onde i, j e k são unidades imaginárias que obedecem a regras
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1.1. Números Reais

específicas de multiplicação, como ij = k, jk = i, ki = j,
4ji = −k, kj = −i, ik = −j.

Ao contrário dos números reais e complexos, os quatérnios
não obedecem à comutatividade na multiplicação, ou
seja, a ordem dos fatores altera o produto. Ainda assim,
eles se mostraram extremamente poderosos, especialmente na
representação de rotações no espaço tridimensional. Por isso, são
amplamente usados em computação gráfica, robótica, aviação e
realidade virtual. Os números complexos e os quatérnios mostram
que os conceitos numéricos não são fixos, mas sim construções
que evoluem conforme surgem novas necessidades matemáticas,
científicas e tecnológicas. Cada nova ampliação do conceito de
número representou um passo importante na consolidação da
Matemática como uma ferramenta para descrever e compreender
o mundo.

Àlgebra Básica

Considerando as propriedades algébricas satisfeitas pelos núme-
ros reais apresentadas acima, vale destacar a aplicação correta
das mesmas, em especial a propriedade distributiva. Em relação
a tal propriedade é usual em Matemática a expressão “colocar o
fator comum em evidência”, o que nada mais é do que aplicar a
distributividade da multiplicação em relação a adição:

ab + ac = a(b + c).

Na expressão acima, a é dito o fator comum às duas parcelas e,
assim, pode ser colocado em evidência.
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1. Números e Funções

Exemplo 1.1.5. Coloque o fator comum em evidência nas
expressões abaixo.

1. 3x + 6 = 3x + 3 · 2 = 3(x + 2);

2. 3xh + h2 = h(3x + h);

3. 5hx4 + h2x + h4x2 = hx(5x3 + h + h3x).

Quando se tratar de uma expressão envolvendo uma fração,
somente poderá ser simplificado o fator que seja comum a cada
uma das parcelas do numerador e do denominador.

Exemplo 1.1.6. Simplifique a expressão 2x2 + x

x4 + 5x
.

Solução 1.1.1. De fato,

2x2 + x

x4 + 5x
= x(2x + 1)

x(x3 + 5) = 2x + 1
x3 + 5 .

As relações acima são entendidas como expressões algé-
bricas, isto é, combinações de variáveis (letra ou símbolo que
representa um número real a ser determinado), constantes (núme-
ros reais especificados) e as operações básicas: adição, subtração,
multiplicação, divisão, potenciação e radiciação. Estas duas
últimas serão relembradas mais adiante. Nesse contexto, é de
grande valia a aplicação da regra de sinais:

a · (−b) = (−a) · b = −(a · b)

e
a · b = (−a) · (−b),

12



1.1. Números Reais

para todos a, b ∈ R.

Exemplo 1.1.7. Usando a regra acima tem-se

1. −12 = −4 · 3 = 4 · (−3);

2. 16 = 4 · 4 = (−4) · (−4);

3. −(x + 7) = −x − 7;

4. −(−x) = x, para todo x ∈ R.

Além disso, com tal regra é possível ressignificar o símbolo
“−a” usado para indicar o simétrico aditivo de a ∈ R. De fato,
vale

−a = (−1) · a,

para todo a ∈ R.
Quanto as operações de potenciação e radiciação mencionadas

acima, temos as seguintes definições e propriedades:

Definição 1.4. A potência de base a ∈ R, com a > 0, e expoente
n ∈ N, é o número real an tal que{

a1 = a
an+1 = a · an

Dessa definição decorre que

a2 = a · a1 = a · a,

a3 = a · a2 = a · a · a,

13



1. Números e Funções

e, em geral,
an = a · a · ... · a (n − vezes).

Para quaisquer m, n ∈ N e a, b ∈ R positivos tem-se

(P1) am · an = am+n,

(P2) (a · b)n = an · bn,

(P3)
(a

b

)n

= an

bn
,

(P4) (am)n = am·n.

A propriedade (P1) é a propriedade mais importante, pois todas
as outras decorrem dela e a mesma serve como caracterizaçao
para an. Além disso, vale que

• a > 1 ⇒ 1 < a < a2 < · · · < an < an+1 < · · · ;

• 0 < a < 1 ⇒ 1 > a > a2 > · · · > an > an+1 > · · · .

Para o caso em que n ∈ Z, isto é, caso em que n pode ser
negativo ou zero, deve ser mantida a propriedade fundamental
am · an = am+n. Com base nisso, devemos ter a0 · a = a0+1 = a.
Como a ̸= 0, segue que

a0 = 1.

Do mesmo modo,

a−n · an = a0 = 1 ⇒ a−n = 1
an

, n ∈ N.
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1.1. Números Reais

Assim, para n ∈ N, vale
a0 = 1,
a1 = a,
an+1 = a · an = a · a · ... · a (n − vezes),
a−n = 1

an
.

Temos ainda:

• am · an = am+n, ∀ m, n ∈ Z;

• a > 1 ⇒ a−n < 1 < an, n ∈ N;

• 0 < a < 1 ⇒ an < 1 < a−n, n ∈ N;

• (am)n = am·n, ∀ m, n ∈ Z.

O caso r ∈ Q, isto é, r = m

n
com m ∈ Z e n ∈ N, seguimos

as mesmas ideias acima:

(ar)n = ar · ar · ... · ar = arn = am ⇒ ar = n
√

am.

Ou seja,
a

m
n = n

√
am,

definindo assim a operação de radiciação. As propriedades
acima continuam válidas. Em especial, ar ·as = ar+s, para todos
r, s ∈ Q, e

n
√

a · n
√

b = n
√

a · b,

n
√

a
n
√

b
= n

√
a

b
, b ̸= 0,
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1. Números e Funções

(
n
√

a
)m = n

√
am,

m

√
n
√

a = m·n
√

a,

n
√

a = n
√

b ⇐⇒ a = b (a, b ≥ 0).

Exemplo 1.1.8. Algumas potências importantes (produtos notá-
veis):

(a + b)2 = a2 + 2ab + b2,
(a − b)2 = a2 − 2ab + b2,
(a + b)(a − b) = a2 − b2,

(a + b)3 = a3 + 3a2b + 3ab2 + b3,
(a − b)3 = a3 − 3a2b + 3ab2 − b3.

Exemplo 1.1.9. Com base no exemplo anterior, temos

1. (3x + 2)2 = 9x2 + 12x + 4,

2. (5y − 1)2 = 25y2 − 10y + 1,

3. (x + 4)(x − 4) = x2 − 16,

4. (x + 2)3 = x3 + 6x2 + 12x + 8.

Exemplo 1.1.10.
(
x +

√
2
)3 = x3 + 3x2√

2 + 6x + 2
√

2.

Exemplo 1.1.11.
(√

3 − y
)3 = 3

√
3 − 9y + 3

√
3y2 − y3.

Exemplo 1.1.12. Uma aplicação muito utilizada da noção de
potências é a chamada notação científica. Tal aplicação
consiste em uma forma de escrever números muito grandes ou
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1.1. Números Reais

muito pequenos usando potências de 10 com expoente inteiro.
Mais precisamente, um número α > 0 em notação científica tem
a forma:

α = a · 10n,

com n ∈ Z e 1 ≤ a < 10. Assim, temos em particular

300 000 = 3 × 105,

0,00042 = 4,2 × 10−4,

(2 × 103) · (3 × 105) = 6 × 108,

e
4 × 107

2 × 103 = 2 × 104.

Por fim, no caso de expoente irracional, podemos calcular
an, com n ∈ Qc, de forma aproximada. A ideia geral é, dados
um número real a > 0 e um número irracional n, podemos
construir por meio de aproximações sucessivas (“por falta e por
excesso”) de potências de a com expoente racional, um único
número real positivo an.

Exemplo 1.1.13. Cálculo aproximado de 13
√

2. Temos que
existem números racionais αn e βn, n ∈ N, tais que

αn <
√

2 < βn, ∀ n ∈ N.

Por exemplo:
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1. Números e Funções

⋆ Por falta

• α1 = 1, α2 = 1, 4 = 14
10 ,

• α3 = 1, 41 = 141
100 ,

• α4 = 1, 414 = 1414
1000 ,

• α5 = 1, 4142 = 14142
10000 , ...

⋆ Por excesso

• β1 = 2,

• β2 = 1, 5 = 15
10 ,

• β3 = 1, 42 = 142
100 ,

• β4 = 1, 415 = 1415
1000 ,

• β5 = 1, 4143 = 14143
10000 , ...

Segue que
13αn < 13

√
2 < 13βn , n ∈ N.

Assim, podemos definir o valor de 13
√

2 via aproximações por
falta ou por excesso de potências de base 13 e expoentes racionais
da seguinte forma:

⋆ Por falta

18



1.1. Números Reais

• 131 = 13,
• 131,4 = 36, 267756667,
• 131,41 = 37, 210039132,
• 131,414 = 37, 59377174,
• 131,4142 = 37, 613061911, ...

⋆ Por excesso

• 132 = 169,
• 131,5 = 46, 872166581,
• 131,42 = 38, 176803296,
• 131,415 = 37, 69032163,
• 131,4143 = 37, 622710708, ...

Assim, podemos considerar

13
√

2 ≈ 37, 6.

Valor Absoluto e Intervalos

A relação de ordem ≤ e a propriedade de tricotomia em R
permitem estabelecer a seguinte definição.

Definição 1.5. Seja x ∈ R. Definimos o valor absoluto (ou
módulo) de x como sendo

|x| =
{

x, se x ≥ 0;
−x, se x < 0.

19



1. Números e Funções

Exemplo 1.1.14. |6| = 6 e | − π| = −(−π) = π.

Exemplo 1.1.15. Se x ∈ R é tal que |x| = 4, então o ponto na
reta real cuja coordenada é x dista 4 unidades da origem O, ou
seja, x = 4 ou x = −4. Assim, resolver uma equação da forma
|x| = m, com m > 0, equivale a x = m ou x = −m, isto é, o
conjunto solução será S = {−m, m}.

Exemplo 1.1.16. Seguindo as ideias do exemplo anterior pode-
mos concluir que

|x + 4| = 2 ⇔ x + 4 = 2 ou x + 4 = −2,

ou seja,
x = −2 ou x = −6.

Geometricamente |x| pode ser interpretado como sendo a
distância do ponto P , correspondente a x, à origem O na reta
real, isto é, o comprimento do segmento OP .

Figura 1.8: Interpretação geométrica de |x|.

R0
O

x
P

|x|

Dado x ∈ R, decorrem imediatamente da definição de valor
absoluto as seguintes propriedades

|x| = max{x, −x},
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1.1. Números Reais

|x| ≥ 0,

| − x| = |x|

e
|x| = 0 ⇔ x = 0.

A seguir listamos mais algumas propriedades importantes do
valor absoluto de um número real.

Teorema 1.1. Sejam a, b, x ∈ R, então

1. |ab| = |a||b|.

2. |a + b| ≤ |a| + |b|. (Desigualdade Triangular)

3. Se a ∈ R, com a > 0, então |x| ≤ a ⇔ −a ≤ x ≤ a.

4. Se b ∈ R, com b > 0, então |x| ≥ b ⇔ x ≤ −b ou x ≥ b.

5.
√

x2 = |x|.

A demonstração do resultado acima segue da definição de
valor absoluto e das prooriedades da relação de ordem em R.
Vale destacar que as desigualdades em (3.) e (4.) são cruciais
na resolução de desigualdades ou inequações.

Exemplo 1.1.17. Considere a desigualdade |2x + 1| ≤ 4. Usando
a propriedade 3. acima,

|2x + 1| ≤ 4 ⇔ −4 ≤ 2x + 1 ≤ 4 ⇔

⇔ −5 ≤ 2x ≤ 3 ⇔ −5
2 ≤ x ≤ 3

2 .
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1. Números e Funções

Assim, a solução da desigualdade será o conjunto

S =
{

x ∈ R; −5
2 ≤ x ≤ 3

2

}
.

Figura 1.9: Interpretação geométrica do conjunto S.

R
− 5

2
3
2

Observação 1.3. Sejam A e B dois pontos sobre a reta real com
coordenadas a e b respectivamente. Então,

d(A, B) := |a − b| = |b − a|

define a distância (unidimensional) entre A e B.

Figura 1.10: Distância entre A e B.

Ra
A

b

B

|b − a|

A relação de ordem em R determina ainda importantes
conceitos e subconjuntos em R, a saber, o conceito de conjuntos
limitados e de intervalos.
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Definição 1.6. Seja X ⊂ R não vazio.Diz-se que X é limitado
superiormente se existe b ∈ R tal que x ≤ b, para todo x ∈ X.
Cada b com essa propriedade é dito uma cota superior de X.

Da mesma forma,

Definição 1.7. Diz-se que X é limitado inferiormente se existe
a ∈ R tal que a ≤ x, para todo x ∈ X. Cada a com essa
propriedade é dito uma cota inferior de X.

Definição 1.8. Diz-se que X é limitado se for limitado superior
e inferiormente.

Neste último caso, vale a ≤ x ≤ b, para todo x ∈ X. Em
termos do valor absoluto, um conjunto ser limitado significa que
existe C ∈ R, com C > 0, tal que |x| ≤ C, para todo x ∈ X.

Exemplo 1.1.18.

1. X =
{

1
n

; n ∈ N
}

⊂ R é limitado (a = 0 e b = 1);

2. N ⊂ R é limitado inferiormente (a = 1), mas não é limitado
superiormente.

3. Z e Q são ambos não limitados em R;

Definição 1.9. Um intervalo é um subconjunto I de R com a
propriedade de que para todos x, y ∈ I, se z ∈ R é tal que
x ≤ z ≤ y então z ∈ I.
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1. Números e Funções

Conforme a limitação, os intervalos são denotados como
segue:

1 - [a, b] = {x ∈ R; a ≤ x ≤ b}.

Figura 1.11: Intervalo fechado e limitado.

R
a b

2 - [a, b) = {x ∈ R; a ≤ x < b}.

Figura 1.12: Intervalo (limitado) semiaberto à direita.

R
a b

3 - (a, b] = {x ∈ R; a < x ≤ b}.

Figura 1.13: Intervalo (limitado) semiaberto à esquerda.

R
a b

4 - (a, b) = {x ∈ R; a < x < b}.

Figura 1.14: Intervalo aberto e limitado.

R
a b
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1.1. Números Reais

5 - [a, +∞) = {x ∈ R; a ≤ x}.

Figura 1.15: Intervalo fechado e não limitado superiormente.

R
a

6 - (−∞, b] = {x ∈ R; x ≤ b}.

Figura 1.16: Intervalo fechado e não limitado inferiormente.

R
b

7 - (a, +∞) = {x ∈ R; a < x}.

Figura 1.17: Intervalo aberto e não limitado superiormente.

R
a

8 - (−∞, b) = {x ∈ R; x < b}.

Figura 1.18: Intervalo aberto e não limitado inferiormente.

R
b

9 - R = (−∞, +∞).
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1. Números e Funções

Figura 1.19: Reta real.

R

Note que os quatro primeiros intevalos acima são limitados.
Os intervalos são usados frequentemente para representar
conjuntos-soluções de desigualdades.

Exemplo 1.1.19. Na desigualdade |2x + 1| ≤ 4 resolvida no

Exemplo 1.1.17, tem-se S =
[
−5

2 ,
3
2

]
.

Exemplo 1.1.20. Considere a desigualdade |x2 − 4| ≤ 2. Note
que

|x2 − 4| ≤ 2 ⇔ −2 ≤ x2 − 4 ≤ 2 ⇔ 2 ≤ x2 ≤ 6 ⇔

⇔
√

2 ≤ |x| ≤
√

6.

O conjunto solução da primeira desigualdade será S1 = {x ∈
R; x ≥

√
2 ou x ≤ −

√
2}.

Figura 1.20: Conjunto S1.

x

−
√

2
√

2

Para o conjunto solução da segunda desigualdade temos
S2 = {x ∈ R; −

√
6 ≤ x ≤

√
6}.
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Figura 1.21: Conjunto S2.

x

−
√

6
√

6

Note que a desigualdade
√

2 ≤ |x| ≤
√

6 nos diz que as
duas condições devem ser satisfeitas simultaneamente. Logo, o
conjunto solução é a interseção dos conjuntos S1 e S2, isto é,
S = S1 ∩ S2. Logo,

S = {x ∈ R; −
√

6 ≤ x ≤ −
√

2 ou
√

2 ≤ x ≤
√

6}.

Em notação de intervalo segue que

S = [−
√

6, −
√

2] ∪ [
√

2,
√

6].

Figura 1.22: Representação geométrica da solução.

x

−
√

6
√

6−
√

2
√

2

1.2 Funções Reais de Variável Real

O conceito de função, junto com sua representação gráfica, é
certamente um dos mais importantes em Matemática e é fer-
ramenta poderosa na modelagem de inúmeros fenômenos. De
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1. Números e Funções

maneira intuitiva, uma função relaciona ou faz correspondênci-
a/transformações entre dois objetos que podem ter naturezas
diferentes, isto é, que podem pertencer a conjuntos distintos,
porém com uma certa hierarquia de “saída e chegada”, bem
como algumas restrições. Isso mostra que o conceito de função
depende fortemente das noções de par ordenado, produto carte-
siano (“hierarquia”) e de relação binária (“correspondências ou
transformações”).

Um par ordenado é um par de objetos cuja ordem em que
estão listados tem importância.

Definição 1.10. Dados A, B conjuntos não vazios com a, c ∈ A
e b, d ∈ B, definimos o par ordenado (a, b) como sendo um
terceiro elemento associado ao par {a, b} de modo que

(a, b) = (c, d) ⇔ a = c e b = d.

Tal noção estabelece a como o primeiro e b como segundo
elemento na listagem.

Observação 1.4.

1. Em geral (a, b) ̸= (b, a), valendo a igualdade se, e somente
se, a = b;

2. (a, b) ̸= {a, b}.

Por sua vez, um produto cartesiano entre dois conjuntos A e
B, é a coleção de todos os possíveis pares ordenados que podemos
formar com elementos desses conjuntos.
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Definição 1.11. Sejam A e B conjuntos não vazios. Chama-se
Produto Cartesiano de A por B ao conjunto

A × B = {(x, y) ; x ∈ A e y ∈ B}.

Exemplo 1.2.1. Considere A = {1, 3} e B = {1, 2, 3}. Então:

A × B = {(1, 1), (1, 2), (1, 3), (3, 1), (3, 2), (3, 3)}

e
B × A = {(1, 1), (1, 3), (2, 1), (2, 3), (3, 1), (3, 3)}.

Exemplo 1.2.2. Designamos por R2 = {(x, y) ; x, y ∈ R} o
conjunto formado pelos pares ordenados (x, y), onde x e y são
números reais.

Na linguagem comum o termo “Relação” significa “conexão
ou associação entre objetos”. Dessa forma, uma relação binária
R , ou simplesmente relação R, entre os elementos de A e os
elementos de B, é uma condição ou um conjunto de condições
que permitem determinar, dados x ∈ A e y ∈ B, se x está ou não
se relacionando com y segundo R. Esse conjunto de condições
define formalmente um subconjunto R ⊂ A × B.

A notação usual para manipulação de relações binárias é
dada a seguir:

xRy ⇐⇒ (x, y) ∈ R ⇐⇒ x se relaciona com y segundo R.

Exemplo 1.2.3. Sejam A o conjunto de pessoas em uma dada
cidade e B o conjunto formado por todos os números de telefone
disponíveis para tal cidade. Uma relação imediata entre tais
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conjuntos é T : “tem como número de telefone”. Assim, para
x ∈ A e y ∈ B, x T y significa que a pessoa x tem como número
de telefone y. Note que em tal relação podemos ter pessoas em
A que não possui número de telefone (elemento em A que não
se relaciona com nenhum elemento de B) e pessoas com mais de
um número de telefone também (elemento em A que se relaciona
com vários elementos de B).

Exemplo 1.2.4. Considere o mesmo conjunto A do exemplo
anterior e, agora, o conjunto C de todos os CPF’s válidos
registrados na mesma cidade. Considerando a relação S: “tem
como CPF”, dizer que x S z, com x ∈ A e z ∈ C, significa que
a pessoa x tem como CPF o número z. Cada pessoa tem um
único CPF (em teoria), e um CPF só pode estar associado a
uma única pessoa.

Exemplo 1.2.5. Considerando uma produção em pequena escala
de determinado produto, é assegurado que o custo variável, Cv,
da produção é proporcional à quantidade x produzida. Assim,
denotando por Cf o custo fixo de produção, temos que o valor
de cada produto fica determinado de modo único pela relação
C = Cv · x + Cf . A relação C é usada em economia para
representar o custo para produzir x unidades de um produto.

Exemplo 1.2.6. Seja E o conjunto de todas as retas de um plano
α. A relação de paralelismo P é definida por

xPy ⇔ x coincide com y ou x ∩ y = ∅.

Na relação de paralelismo substitui-se a notação P por duas
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barras paralelas //. Assim,

x P y ⇔ x // y,

como é usualmente conhecida na literatura. Nesse caso, também
temos retas que não se relacionam (retas concorrentes, por
exemplo), e retas se relacionando com várias outras.

A relação binária entendida como função, exige uma corres-
pondência para cada elemento da “saída” com um único elemento
na “chegada”, como nos Exemplos 1.2.4 e 1.2.5.

Definição 1.12. Dados dois conjuntos A e B, uma função f de
A em B é uma relação que associa cada elemento x ∈ A a um
único y ∈ B.

Note que existe uma dependência do elemento y ∈ B em
relação ao elemento x ∈ A, os quais são denominados variável
dependente e variável independente, respectivamente. Assim,
escreve-se y = f(x) em vez de x f y. Em um contexto aplicado,
tais variáveis são ditas grandezas e podem ser representadas por
outras letras.

A exigência de unicidade na definição de função evita ambi-
guidades e permite a tradução precisa de inúmeros fenômenos
para o contexto matemático.

Exemplo 1.2.7. Da Biologia sabe-se que a taxa de fotossíntese
depende da intensidade da luz. Mais especificamente, consi-
derando que para baixos níveis de luz, a taxa aumenta quase
linearmente e para altos níveis de luz existe saturação, ou seja, a
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planta não consegue aproveitar mais luz, deduz-se que a função

F (I) = aI

b + I
,

relaciona a intensidade luminosa I com a taxa de fotossíntese
F (I), onde a, b ∈ R são constantes que dependem da planta e
do ambiente.

Exemplo 1.2.8. Dado um corpo metálico de comprimento inicial
L0 em processo de aquecimento, tem-se experimentalmente
que o aumento de comprimento do corpo através do aumento
de temperatura ocorre de forma proporcional à variação de
temperatura:

∆L := Lf − L0 = αL0∆T,

com Lf = L(T ) = comprimento a temperatura T . Como a
temperatura inicial é T0 = 0, temos

L(T ) = L0 + αL0T = L0(1 + αT ),

para cada T ≥ 0 e α ∈ R fixo (constante de proporcionalidade
ou coeficiente de dilatação térmica).

Exemplo 1.2.9. No Exemplo 1.2.5, temos a função C := C(x) =
Cv · x + Cf representando o custo para produzir x unidades de
um produto (produção em pequena escala).

Uma forma de representar uma função f de A em B é através
da notação

f : A −→ B
x 7−→ y = f(x),
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bem como, em casos mais simples, do chamado Diagrama de
Flechas ou Diagrama de Venn.

Figura 1.23: Corresponência entre conjuntos com diagrama de
Venn.

A

1

2

3

B

a

b

c

Nas representações acima, o conjunto à esquerda representa a
“saída” ou domínio de f , denotado por Dom(f), e o conjunto à
direita representa a “chegada” ou contradomínio f. O símbolo
“7−→” e as flechas indicam como cada elemento do domínio é
mapeado para o contradomínio (y = f(x)), formando o conjunto
imagem:

Im(f) = {y ∈ B ; y = f(x) para algum x ∈ A} ⊂ B.

Exemplo 1.2.10. Seja X o conjunto dos triângulos de um plano
α. Se, a cada t ∈ X fizermos corresponder o número real f(t) =
área de t, obteremos uma função f : X −→ R. Neste caso,
Dom(f) = X e Im(f) = (0, +∞).

Exemplo 1.2.11. A correspondência idA : A −→ A, que para
cada x ∈ A associa o próprio x, isto é, idA(x) = x é uma
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função a qual recebe o nome de função identidade de A. Aqui
Dom(f) = Im(f) = A.

Exemplo 1.2.12. Dados A e B conjuntos e b ∈ B um elemento
fixo, temos que a correspondência f : A −→ B dada por f(x) = b,
para todo x ∈ A é uma função denominada função constante.
Note que Im(f) = {b}.

Exemplo 1.2.13. A correspondência f : R −→ R dada por
f(x) = mx + b, com m, b ∈ R fixos, define a chamada função
afim. Neste caso, Im(f) = R.

Exemplo 1.2.14. A correspondência f : R −→ R dada por
f(x) = anxn + · · · + a1x + a0, com an, · · · , a1, a0 ∈ R fixos,
define a chamada função polinomial de grau n.

Exemplo 1.2.15. A correspondência f : R −→ R dada por

f(x) = |x| =
{

x, se x ≥ 0,
−x, se x < 0.

define a chamada função modular e Im(f) = [0, +∞).

Vale destacar que, conforme a definição acima, uma função
fica inteiramente caracterizada por meio do seu domínio A e
da sua regra de correspondência y = f(x). Com isso, fica
estabelecida a noção de igualdade entre funções: para f e g
funções, vale

f = g ⇔ Dom(f) = Dom(g) e f(x) = g(x), para todo x.
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Gráfico de Funções

O gráfico de uma função é a representação visual dos pares
ordenados (x, f(x)), mostrando como os valores de chegada f(x)
variam em relação aos valores de saída x. Tal recurso auxilia
no entendimento do comportamento da função como um todo,
em especial, crescimento, decrescimento, máximos e mínimos,
conforme seções a seguir.

Para um bom entendimento da representação gráfica de uma
função, vale relembrar a interpretação do conjunto R2 como
plano coordenado. Sendo R2 = {(x, y) ; x, y ∈ R} o conjunto
formado pelos pares ordenados (x, y), onde x e y são números
reais, tais pares ordenados são representados no plano da seguinte
forma:

1. considere dois eixos x e y perpendiculares na origem O;

2. dado um ponto P no plano, trace retas paralelas aos eixos
coordenados passando por P ;

3. ficam determinados, de modo único, dois pontos P1 e
P2 nos eixos x e y, respectivamente, para os quais já foi
estabelecida uma coordenada em R (reta real);

4. sejam x1 e y1 as respectivas coordenadas de P1 e P2.

Assim, cada ponto P no plano fica associado de forma única
ao par ordenado (x1, y1) ∈ R2, onde o número x1 é dito a
primeira coordenada ou abscissa, e o número y1 é dito a segunda
coordenada ou ordenada de P .

Referente aos eixos coordenados tem-se
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Figura 1.24: Plano Coordenado.

x

y

O

P = (x1, y1)
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• no eixo - x os pontos têm coordenadas (x, 0),

• no eixo - y os pontos têm coordenadas (0, y).

Os eixos ortogonais decompõem o plano em quatro regiões
chamadas quadrantes:

• Primeiro Quadrante {(x, y)|x > 0 e y > 0}.

• Segundo Quadrante {(x, y)|x < 0 e y > 0}.

• Terceiro Quadrante {(x, y)|x < 0 e y < 0}.

• Quarto Quadrante {(x, y)|x > 0 e y < 0}.
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Figura 1.25: Quadrantes do plano coordenado.
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Estabelecido o plano coordenado, define-se o gráfico de
uma função f : A ⊂ R −→ R como o conjunto G(f)
caracterizado como o lugar geométrico descrito pelos pares
ordenados (x, f(x)) ∈ R2, quando x percorre o domínio A.
Formalmente,

G(f) = {(x, y) ∈ R2 ; y = f(x), x ∈ A}
= {(x, f(x)) ; x ∈ A}.

37



1. Números e Funções

Figura 1.26: Gráfico de y = f(x).
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Um dos primeiros recursos para traçar gráficos de funções
reais é o procedimento baseado em substituição e interpolação.
A partir da lei de associação da função, monta-se uma tabela de
valores e, em seguida, os pontos correspondentes são marcados
no plano cartesiano e ligados.

Exemplo 1.2.16. Considere a função dada por f(x) = 2x + 1,
definida em R.

x f(x)
-2 -3
-1 -1
0 1
1 3
2 5
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Com base na tabela acima, podemos inferir o gráfico da função
f(x) = 2x + 1 como segue.

Figura 1.27: Gráfico de y = 2x + 1.
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Exemplo 1.2.17. Para a função f(x) = x2 − 4 tem-se

x f(x)
-3 5
-2 0
-1 -3
0 -4
1 -3
2 0
3 5

Assim, como no exemplo anterior, o gráfico da função f(x) =
x2 − 4 será
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Figura 1.28: Gráfico de y = x2.
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O método acima tem o inconveniente de ser aplicado em casos
bem elementares de funções como as funções polinomiais acima.
Para algumas funções pode-se aplicar métodos qualitativos
baseados na noção de distância no plano.

Sejam P1 = (x1, y1) e P2 = (x2, y2) dois pontos do plano
coordenado e considere Q = (x1, y2). Como d(P1, Q) = |y2 − y1|
e d(P2, Q) = |x2 − x1| temos, pelo Teorema de Pitágoras

d(P1, P2)2 = d(P2, Q)2 + d(P1, Q)2

⇔ d(P1, P2)2 = |x2 − x1|2 + |y2 − y1|2.

Portanto,

d(P1, P2) =
√

(x2 − x1)2 + (y2 − y1)2.

A expressão acima define a distância no plano (bidimensional)
entre dois pontos.
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Figura 1.29: Distância no plnao coordenado.
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Com base na noção de distância em R2, entende-se por
circunferência o lugar geométrico formado pelos pontos do
plano que têm a mesma distância a um ponto fixado. Ou seja,
dados um ponto A ∈ R2 e um número r > 0, a circunferência
C de centro A e raio r > 0 é o conjunto dos pontos do plano
situados à distância r do ponto A:

C = {P ∈ R2 ; d(P, A) = r}.

Então, para A = (a, b) e P = (x, y),

P ∈ C ⇔ d(P, A) = r ⇔ d(P, A)2 = r2,
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logo,
(x − a)2 + (y − b)2 = r2.

Com base na descrição acima podemos ainda obter gráficos
de algumas funções.

Exemplo 1.2.18. Considere a função f : [−1, 1] −→ R dada por
f(x) =

√
1 − x2. Com base na noção de distância acima segue

que o gráfico da função f é uma semi-circunferência de centro
na origem e raio 1, situada no semi-plano y ≥ 0. De fato, basta
observar que (x, y) ∈ G(f) se, e somente se, −1 ≤ x ≤ 1 e
y =

√
1 − x2. Daí, temos y ≥ 0 e x2 + y2 = 1, o que caracteriza

a uma semi-circunferência mencionada acima.

Figura 1.30: Gráfico de y =
√

1 − x2.
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Exemplo 1.2.19. Considerando a função f : R → R dada por
f(x) = 2x+1, vista anteriormente, e P1, P2 e P3 pontos quaisquer
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do gráfico de f , então tais pontos verificam

d(P1, P3) = d(P1, P2) + d(P2, P3),

isto é, supondo d(P1, P3) o maior dos três números, tem-se que
P1, P2 e P3 são colineares. Isso mostra diretamente que o
gráfico de f é uma reta, como observado no Exemplo 1.2.16.

Exemplo 1.2.20. O gráfico de uma função está intimamente
relacionado com o domínio da função. Isso pode ser notado
considerando a função g : N → R dada por g(n) = 2n + 1. O
gráfico dessa função consiste em um conjunto discreto de pontos
(e não uma linha contínua).

Figura 1.31: Gráfico de g(n) = 2n + 1, com n ∈ N.
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Em matemática ou em aplicações na física, engenharia e
economia, é comum encontrar gráficos de relações entre variáveis.
No entanto, nem toda relação entre duas variáveis representa
uma função. A ferramenta visual que usamos para isso é o teste
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da reta vertical: Uma relação é função se nenhuma reta vertical
intersecta seu gráfico em mais de um ponto.

Figura 1.32: Teste da reta vertical.
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Não é função: x2 + y2 = 1

Observação 1.5. Vale destacar que uso de tabelas de valores
para a construção de gráficos sempre deve ser complementado
com uma análise qualitativa da função como, por exemplo,
propriedades de crescimento, limitação e pontos extremos da
função (conceitos apresentados mais adiante).

Observação 1.6. A construção de gráficos por meios qualitativos
e quantitativos são facilitados com as ferramentas do Cálculo
Diferencial e Integral.

Observação 1.7. Nem todos os tipos de gráficos usados para
representar informações numéricas podem ser interpretados como
gráficos de funções. Algumas representações comuns — como
diagramas de dispersão, histogramas, e gráficos de barras —

44



1.2. Funções Reais de Variável Real

exibem relações entre variáveis, mas não satisfazem a definição
de função. Os gráficos abaixo representam, respectivamente,
uma função, uma relação amostral (diagrama de dispersão) e
dois gráficos estatísticos: histograma e gráfico de barras.

Figura 1.33: Exemplos de representações gráficas
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Nas seções seguintes, serão abordadas apenas propriedades
gerais das funções reais de variável real, isto é, funções
cujo domínio e contradomínio são subconjuntos de R. Do
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mesmo modo, também será destacado o estudo das principais
funções consideradas elementares: afins, quadráticas, modulares,
exponenciais, logarítmicas, trigonométricas. Compreender essas
propriedades gerais é essencial para articulação coerente dos
aspectos concreto (aplicações), abstrato (relação binária) e
operacional (manipulações algébricas) do conceito de função.

1.3 Funções Monótonas

Algumas funções possuem certos comportamentos “padroniza-
dos”. Dentre esses, destacam-se os conhecidos como monótonos,
os quais estão associados com o estudo de crescimento e o de-
crescimento de funções. São eles: crescente, não-decrescente,
decrescente ou não-crescente. Assim, uma função monótona
em um conjunto S ⊂ R pode ser crescente, decrescente, não-
decrescente ou não-crescente neste conjunto.

Definição 1.13. Dizemos que uma função f : X → R é crescente
em um subconjunto S de X, se dados x1, x2 ∈ S vale a seguinte
implicação

x1 < x2 ⇒ f(x1) < f(x2).

Isso significa que ao aumentarmos o valor atribuído a x, o
valor de y também aumenta (ver Figura 1.34).

Exemplo 1.3.1. A função y = f(x) = x2 definida em R. Segue
que f é crescente no intervalo S = [0, +∞). De fato, sejam
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Figura 1.34: Função Crescente.
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x1, x2 ∈ S = [0, +∞), com x1 < x2. Então,

x2
2 − x2

1 = (x2 − x1)(x2 + x1) > 0.

Logo, f(x2) > f(x1), mostrando que f é crescente em S. Note
que tal comportamento não ocorre em todo o seu domínio de
definição.

Exemplo 1.3.2. A função dada por f(x) = 3x + 1, com x ∈ R, é
crescente. De fato, para x1, x2 ∈ R com x1 < x2, vale

3x1 < 3x2 ⇒ 3x1 + 1 < 3x2 + 1,

ou seja, f(x1) < f(x2). Segue que y = 3x + 1 é monótona
crescente.

Exemplo 1.3.3. Considere f(x) =
√

x, definida em [0, +∞).
Então, se 0 ≤ x1 < x2, então √

x1 <
√

x2. De fato, faça x1 = a2
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e x2 = b2. Então, x1 < x2 implica em a2 − b2 < 0. Assim,
procedendo como acima concluímos que a < b. Logo:

f(x1) =
√

x1 = a < b =
√

x2 = f(x2).

Portanto, f é crescente em [0, +∞).

Definição 1.14. Dizemos que uma função f : X → R é não-
decrescente em um subconjunto S de X, se

∀x1, x2 ∈ S, x1 < x2 ⇒ f(x1) ≤ f(x2).

Figura 1.35: Função Não-Decrescente
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Nesse contexto a função mantém um processo de crescimento,
porém permitindo intervalos onde a função será constante.

Exemplo 1.3.4. Defina:

f(x) =
{

1, se x ≤ 0
x + 1, se x > 0.
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Então, f é não-decrescente. De fato,

• Se x1, x2 ≤ 0, então f(x1) = f(x2) = 1;

• Se x1 ≤ 0 < x2, então f(x1) = 1 < x2 + 1 = f(x2);

• Se x1, x2 > 0 e x1 < x2, então f(x1) = x1 + 1 < x2 + 1 =
f(x2).

Figura 1.36: Gráfico de y = f(x).
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Definição 1.15. Dizemos que uma função f : X → R é
decrescente em um subconjunto S de X, se

∀x1, x2 ∈ S, x1 < x2 ⇒ f(x1) > f(x2).
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Figura 1.37: Função Decrescente
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y

(x1, f(x1))

(x2, f(x2))

Ou seja, ao aumentarmos o valor atribuído a x, o valor de y
diminui.

Exemplo 1.3.5. Considere f(x) = 1
x

, com domínio (0, +∞).
Então, se 0 < x1 < x2, segue das propriedades dos números reais
que

1
x1

>
1
x2

⇒ f(x1) > f(x2).

Portanto, f é decrescente.

Exemplo 1.3.6. Dada uma função crescente f em um domínio
I ⊂ R, segue que −f é decrescente no mesmo domínio. Assim,
g(x) = −x2 e h(x) = −

√
x são decrescentes em I = [0, +∞).

Definição 1.16. Dizemos que uma função f : X → R é não-
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1.3. Funções Monótonas

crescente em um subconjunto S de X, se

∀x1, x2 ∈ S, x1 < x2 ⇒ f(x1) ≥ f(x2).

Figura 1.38: Função Não-Crescente
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Exemplo 1.3.7. Dada a função

f(x) =

3, se x ≤ 1
1
x

, se x > 1,

segue que

• se x1, x2 ≤ 1, então f(x1) = f(x2) = 3;

• se x1 ≤ 1 < x2, então f(x1) = 3 >
1
x2

= f(x2);
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1. Números e Funções

• se x1, x2 > 1 e x1 < x2, então 1
x1

>
1
x2

⇒ f(x1) > f(x2).

Portanto, f é não crescente.

Observação 1.8. Toda função crescente em um conjunto S
é também não-decrescente nesse conjunto, e toda função
decrescente em S é também não-crescente. Além disso, como
observado no exemplo abaixo, algumas funções podem não ser
monótonas em todo o seu domínio.

Exemplo 1.3.8. Considere f(x) = x2, definida em R. Em
(−∞, 0], se x1 < x2 ≤ 0, então x2

1 > x2
2 ⇒ f(x1) > f(x2),

ou seja, f é decrescente. Agora em [0, +∞), se 0 ≤ x1 < x2,
então x2

1 < x2
2 ⇒ f(x1) < f(x2), ou seja, f é crescente. Portanto,

f(x) = x2 é decrescente em (−∞, 0] e crescente em [0, +∞).

1.4 Funções Limitadas

Definição 1.17. Diz-se que uma função f é limitada, se seu
conjunto imagem, Im(f), é um conjunto limitado. Caso
contrário, a função f será dita ilimitada.

Das propriedades do valor absoluto e da noção de intervalos
em R, tal definição é equivalente a:

1. existir um intervalo aberto I = (a, b), a, b ∈ R, tal que
Im(f) ⊂ (a, b); ou ainda,

2. existir K > 0 tal que |f(x)| ≤ K, para todo x ∈ Dom(f).
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1.4. Funções Limitadas

Assim, o gráfico de uma função limitada sempre estará contido
em uma faixa horizontal do plano.

Exemplo 1.4.1. As funções f(x) = x

|x|
e g(x) = x4

x4 + 1 são

limitadas em R. Neste caso, tem-se Im(f) ⊂ [−1, 1], isto é,
|f(x)| ≤ 1 para todo x ∈ R, e Im(g) ⊂ [0, 1].

Figura 1.39: Funções limitadas.

−2 2

−1

1

f(x) = x

|x|

−2 2

1

g(x) = x4

x4 + 1

Exemplo 1.4.2. A função dada por h(x) = 1
x

é ilimitada em R.
De fato, basta observar que para valores de x suficientemente
próximos de 0, os valores correspondentes de y tornam-se
arbitrariamente grandes. Assim, não existe nenhuma faixa
horizontal do plano que contenha o gráfico de y = 1

x
.
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1. Números e Funções

Figura 1.40: Gráfico de y = 1
x

.
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Com base na noção de funções limitadas, podemos definir
as noções de máximo e mínimo de uma função. Ao longo da
disciplinas de Cálculo Diferencial e Integral, será de grande
importância o cálculo dos pontos de máximo e de mínimo de
uma função, caso existam. Tal estudo será fortemente auxiliado
pela noção de derivada de uma função.

Seja I um intervalo e f : I → R uma função.

Definição 1.18. Dizemos que x0 ∈ I é um ponto de máximo
local de f , se existir δ > 0 tal que f(x) ≤ f(x0), para todo
x ∈ (x0 − δ, x0 + δ) ⊂ I. Neste caso, diremos que f(x0) é o valor
máximo local.
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1.4. Funções Limitadas

Definição 1.19. Dizemos que x0 ∈ I é um ponto de mínimo
local de f , se existir δ > 0 tal que f(x) ≥ f(x0), para todo
x ∈ (x0 − δ, x0 + δ) ⊂ I. Neste caso, diremos que f(x0) é o valor
mínimo local.

Definição 1.20. Dizemos que x0 ∈ I é um ponto de máximo
global de f , se f(x) ≤ f(x0), para todo x ∈ I. Assim, diremos
que f(x0) é o valor máximo global.

Definição 1.21. Dizemos que x0 ∈ I é um ponto de mínimo
global de f , se f(x) ≥ f(x0), para todo x ∈ I. Do mesmo modo,
diremos que f(x0) é o valor mínimo global.

Um ponto x0 ∈ I será dito um ponto extremo local, se x0
for um ponto de máximo local ou um ponto de mínimo local. Do
mesmo modo, um ponto x0 ∈ I será dito um ponto extremo
global, se x0 for um ponto de máximo global ou um ponto de
mínimo global.

Exemplo 1.4.3. Considere a função f : (−1, 6] → R dada por

f(x) =
{

3x − x2, se x ≤ 2
|x − 4| + 1, se x > 2.

Nesse caso, a função f

• possui um máximo local em x0 = 3
2;

• possui mínimos locais em x1 = 2 e x2 = 4;

• possui um máximo absoluto em x3 = 6;

• não possui mínimos absolutos.
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1. Números e Funções

Figura 1.41: Máximos e mínimos de f .
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1.5 Operações com Funções

Dadas as funções f, g : X −→ R podemos definir novas funções
f + g a função soma de f com g, f − g a função diferança
de f com g, f · g a função produto de f por g, e f

g
a função

quociente de f com g da seguinte forma:

(a) (f + g)(x) = f(x) + g(x);

(b) (f − g)(x) = f(x) − g(x);

(c) (f · g)(x) = f(x) · g(x);

(d)
(

f

g

)
(x) = f(x)

g(x) , se g(x) ̸= 0.
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1.5. Operações com Funções

Em geral as funções f e g na definição acima podem ter
domínios diferentes, Dom(f) e Dom(g), respectivamente. Nesse
caso, as operações acima ainda podem ser consideradas desde
que

x ∈ Dom(f) ∩ Dom(g).

Exemplo 1.5.1. Considere as funções dadas por f(x) =
√

7 − x
e g(x) =

√
x − 2, então Dom(f) = (−∞, 7], Dom(g) = [2, +∞)

e Dom(f) ∩ Dom(g) = [2, 7]. Temos que,

(f + g)(x) =
√

7 − x +
√

x − 2

e
(f · g)(x) =

√
(7 − x)(x − 2) =

√
−x2 + 9x − 14,

ambas definidas para 2 ≤ x ≤ 7.

Exemplo 1.5.2. Considerando duas funções polinomiais, pode-
mos considerar uma nova função chamada função racional

h(x) = P (x)
Q(x) = anxn + · · · + a1x + a0

bmxm + · · · + b1x + b0
,

definida para todo x ∈ R tal que Q(x) ̸= 0.

Outra operação com funções de grande importância consiste
em obter a função composta de duas funções dadas.

Definição 1.22. Dadas funções f : X −→ Y e g : Z −→ R,
com Y ⊂ Z. Dado x ∈ X, podemos definir uma nova função
h : X −→ R pondo h(x) = g(f(x)). Tal função é denominada
função composta de g com f e será denotada por g ◦ f .
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Assim,
(g ◦ f)(x) = g(f(x)) = g(u).

Figura 1.42: Diagrama associado a função composta g ◦ f .

x ∈ X f(x) ∈ Y g(f(x)) ∈ Z
f g

g ◦ f

Exemplo 1.5.3. Se f e g são definidas por f(x) = x2 e g(x) =
√

x,
então

(g ◦ f)(x) =
√

x2 = |x|.
Note que o domínio de g é [0, +∞), desde que x2 ≥ 0 para todo
x ∈ R. Logo, a função composta acima está bem definida.

Exemplo 1.5.4. Se f(x) = 2x + 1 e g(x) = x2 + 3x, então
(g ◦f)(x) = g(2x+1) = (2x+1)2 +3(2x+1) = 4x2 +10x+4. Do
mesmo modo temos: (f ◦ g)(x) = f(x2 + 3x) = 2(x2 + 3x) + 1 =
2x2 + 6x + 1.

Note que, em geral, g ◦ f ≠ f ◦ g, isto é, a composição
de funções não é comutativa. Entretanto, vale a propriedade
associativa para tal operação (verifique!).

Exemplo 1.5.5. Considerando f(x) = x

x + 1, g(x) = x10 e
h(x) = x + 3, temos

(f ◦ g ◦ h)(x) = f(g(h(x)))
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1.6. Função Inversa

= f(g(x + 3))
= f

(
(x + 3)10)

= (x + 3)10

(x + 3)10 + 1 .

1.6 Função Inversa

Em muitas situações nas ciências exatas, é comum querermos
“desfazer” uma transformação matemática aplicada a uma
variável. Por exemplo, se conhecemos a relação entre o tempo
e a posição de uma partícula dada por uma função f , pode ser
necessário determinar o instante exato em que a partícula atingiu
uma determinada posição, isto é, inverter a função original. A
noção de função inversa formaliza essa ideia. Assim, dado um
processo f que associa a cada entrada x uma única saída y = f(x),
a função inversa associa, sob certas condições, y de volta ao valor
original x.

O estudo das funções inversas é fundamental em diversas
áreas da ciência, como na resolução de equações, na modelagem
de sistemas físicos ou na análise de dados experimentais. Para
que uma função admita inversa, ela deve ser bijetiva, ou seja,
injetiva e sobrejetiva. No entanto, em muitos contextos científicos,
mesmo funções que não são invertíveis globalmente podem ser
invertidas localmente em trechos de seu domínio.

Estuda-se a seguir o conceito de função inversa, bem como
os critérios que garantem sua existência, e sua representação
gráfica.
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Definição 1.23. Dizemos que f : X → R é injetiva, se elementos
diferentes de X são transformados por f em elementos diferentes
em R. Ou seja,

∀x1, x2 ∈ X, x1 ̸= x2 ⇒ f(x1) ̸= f(x2).

Uma forma equivalente (contrapositiva): Dizemos que f :
X → R é injetiva, se

∀x1, x2 ∈ X, f(x1) = f(x2) ⇒ x1 = x2.

Exemplo 1.6.1. A função f : R → R definida por y = f(x) =
2x+1 é injetiva. De fato, sejam x1, x2 ∈ R tais que f(x1) = f(x2).
Temos:

2x1 + 1 = 2x2 + 1 ⇒ 2x1 = 2x2 ⇒ x1 = x2.

Exemplo 1.6.2. Considere a função f : [0, +∞) → R definida
por y = f(x) = x2. Então, f é injetiva. Para provar isso sejam
x1, x2 ∈ [0, +∞) tais que f(x1) = f(x2). Temos:

x2
1 = x2

2 ⇒ (x1 − x2)(x1 + x2) = 0 ⇒ x1 = x2 ou x1 = −x2.

Como x1, x2 ∈ [0, +∞), segue que x1 = x2, garantindo a
injetividade da função em questão.

Outra forma de provar que a função do exemplo acima é
injetiva é, dados x1, x2 ∈ [0, +∞) com x1 < x2 (sem perda de
generalidade), observar que f é crescente. Assim, segue que
f(x1) < f(x2) e, portanto, f(x1) ̸= f(x2).
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1.6. Função Inversa

Definição 1.24. Dizemos que f : X → R é sobrejetiva, se sua
imagem é igual ao contradomínio. Ou seja, para todo y ∈ R,
existe (pelo menos um) x ∈ X tal que f(x) = y.

Exemplo 1.6.3. A função f : R → R definida por y = f(x) =
2x + 1 é sobrejetiva. Seja y ∈ R. Devemos investigar a equação
f(x) = y. Com efeito,

2x + 1 = y ⇒ x = y − 1
2 .

Assim, existe x = y − 1
2 ∈ R tal que f(x) = y. Logo, f é

sobrejetiva.

Observação 1.9. Mostrar que a função f : [0, +∞) → [0, +∞)
definida por y = f(x) = x2 é sobrejetiva é bem mais complicado!
Será necessário utilizar a noção de funções contínuas, que será
estudada posteriormente.

Definição 1.25. Uma função f : X → R é bijetiva, se for injetiva
e sobrejetiva. Ou seja, se

∀x1, x2 ∈ X, x1 ̸= x2 ⇒ f(x1) ̸= f(x2)

e

∀ y ∈ R, existir (pelo menos um) x ∈ X tal que f(x) = y.

Exemplo 1.6.4. A função f : R → R dada por f(x) = 2x + 1 é
bijetiva!
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1. Números e Funções

Note que a noção de bijetividade, assim como a de injetividade
e a de sobrejetividade, depende do domínio da função em
estudo.

Exemplo 1.6.5. Considere as funções f : R → R e g : [0, +∞) →
[0, +∞) ambas definidas por y = x2. Então, f não é bijeção
(pois não é injetiva e nem sobrejetiva), enquanto g é bijeção.

Estabelecida a noção de funções compostas e de funções
bijetivas, estamos em condições de definir e caracterizar o que
se entende por função inversa.

Definição 1.26. Dizemos que uma função f : X → Y é inversível
se existe uma função g : Y → X tal que

(g ◦ f)(x) = g(f(x)) = x, para todo x ∈ X

e
(f ◦ g)(y) = f(g(y)) = y, para todo y ∈ Y.

A função g é chamada de inversa de f e denotada por f−1.
Assim,

g = f−1.

Em particular, f−1 função inversa de f é caracterizada por

y = f(x) ⇐⇒ f−1(y) = x.

Observação 1.10.

1. Note ainda que

f−1 ◦ f = idX
1 e f ◦ f−1 = idY .

1Função identidade, isto é, idX : X → X e idX(x) = x para todo x ∈ X.
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1.6. Função Inversa

2. Não é difícil provar que a função inversa de f , quando
existe, é única.

Exemplo 1.6.6. A função f : R → R dada por f(x) = 2x + 1 é
inversível. Nesse caso, a função g : R → R dada por g(x) = x − 1

2
é tal que

(g ◦ f)(x) = g(f(x)) = g(2x + 1) = (2x + 1) − 1
2 = x,

e

(f ◦ g)(y) = f(g(y)) = f

(
y − 1

2

)
= 2

(
y − 1

2

)
+ 1 = y,

para todos x, y ∈ R. Assim, podemos escrever

f−1(x) = g(x) = x − 1
2 .

Em geral, para obter a função inversa de f :

(i) considere y = f(x);

(ii) então, resolva tal equação para x em termos de y;

(iii) por fim, “troque os papéis” de x por y para expressar f−1

como função de x.

Esse roteiro funciona em muitos caso, a depender da complexi-
dade da regra que define a função em estudo.

Note ainda que

f−1(x) e [f(x)]−1

denotam objetos diferentes:
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• f−1(x) é a função inversa de f calculada em x;

• [f(x)]−1 é igual a 1
f(x) .

Assim, no exemplo anterior temos

f−1(x) = x − 1
2

e
[f(x)]−1 = 1

2x + 1 .

Teorema 1.2. Uma função f : X → Y é inversível se, e somente
se, f for uma bijeção.

Demonstração. Se f : X → Y é inversível, então existe uma
função g : Y → X tal que g(f(x)) = x, para todo x ∈ X,
e f(g(y)) = y, para todo y ∈ Y . Suponha, por absurdo,
que f não seja injetiva. Então existem x1, x2 ∈ X tais que
x1 ̸= x2 e f(x1) = f(x2). Mas, se f(x1) = f(x2), então
g(f(x1)) = g(f(x2)), isto é, x1 = x2, uma contradição. Assim
f : X → Y é injetiva. Seja y ∈ Y . Se x = g(y), então
f(x) = f(g(y)) = y. Isso mostra que f : X → Y é sobrejetiva.
Portanto, segue que f é bijetiva.

Por outro lado, como f : X → Y é sobrejetiva, para todo
y ∈ Y , existe x ∈ X tal que f(x) = y. Mais ainda: como f é
injetiva, esse x é único. Considere então a função g : Y → X
definida por g(y) = x, onde x é o único elemento de X tal que
f(x) = y. Observe que g(f(x)) = g(y) = x, para todo x ∈ X e
f(g(y)) = f(x) = y, para todo y ∈ Y . Sendo assim, f é inversível
e sua inversa é f−1 = g. ■
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1.6. Função Inversa

Observação 1.11. Provar que uma função é inversível pode não
ser uma tarefa fácil, seja com a definição, seja com a proposição
anterior. Na disciplina de Cálculo Diferencial e Integral são
apresentadas novas ferramentas para determinar se uma função
é inversível (localmente).

Em relação ao gráfico de função inversa f−1, o mesmo
pode ser obtido diretamente do gráfico da função f conforme o
resultado a seguir.

Teorema 1.3. Dada uma função inversível f : X ⊂ R → R,
temos G(f−1) = {(y, f−1(y)) ; y ∈ R} = {(f(x), x) ; x ∈ X}.

Figura 1.43: Gráfico da função inversa.
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Ou seja, G(f−1) é a reflexão de G(f) em torno da reta y = x.
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1. Números e Funções

Para aprofundar os estudos em relação aos tópicos abordados
neste capítulo, recomendamos as referências clássicas (IEZZI;
MURAKAMI, 2013) e (GUIDORIZZI, 2013).

1.7 Exercícios de Fixação

1. Sejam x, y ∈ R∗
+. Prove que

(a) x < y ⇐⇒ x−1 > y−1;
(b) x > 0 ⇐⇒ x−1 > 0.

2. Mostre que:

(a) a < b ⇒ a <
a + b

2 < b.

(b) Se ab = 0 então a = 0 ou b = 0.

3. Mostre que se a2 + b2 = 0 então a = 0 e b = 0.

4. Eliminar o módulo e simplificar a expressão:

(a) |x|
(b) |x + 1|
(c) |x − 1| + |x + 2|
(d) |x| + |x − 1| + |x − 2|

(e) y = x2 − 1
|x − 1|

, x ̸= 1;

(f) y = x + |x|
2|x|

, x ̸= 0.
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5. Resolva as equações modulares abaixo:

(a) |x − 4| = 2;
(b) |1 + 2x| = |1 − 2x|;
(c) |2x − 3| = |1 + x|.

6. Ache todos os valores de x que satisfazem cada uma das
seguintes condições:
(a) |x − 1| = 5 (b) |x + 4| = 3 (c) |x + 1| = |x − 2|
(d) |x2 − 5| ≤ 4

7. Mostre que |a − b| ≤ |a| + |b| , para todos a, b ∈ R.

8. Resolva as seguintes inequações:
(a) x(x − 1) > 0 (b) x4 < x2 (c) x2 + 4x > 0 (d)
2x2 + x < 3
(e) x3 + 1 < x2 + x (f) (2x + 1)8(x + 1) ≤ 0

9. Continue resolvendo inequações:

(a) 3x + 1 < x + 4;
(b) 2x − 7 > 5x + 2;

(c) x + 1
2 − 1 − x

4 ≤ 1;

(d) 2(1 + x) − x

3 + 2x − 1
2 >

7x

6 ;

(e) 2
x

− 3
4 ≥ 0;

(f)
∣∣∣∣1 + x

2

∣∣∣∣ < 4;
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(g)
∣∣∣∣2 − 5x

2

∣∣∣∣ > 1;

(h) 1 − 1
|x|

> 0.

10. Escreva em notação de intervalo o conjunto solução das
inequações da questão anterior.

11. Descreva os conjuntos a seguir e represente os mesmos
geometricamente.

(a) [0, 2] ∩ [1, 3]

(b) (−∞, 2] ∩ [0, +∞)

(c)
[
−1

2 , 0
)

∪
(

−3
2 , −1

4

]
12. Faça um esboço da região do plano descritas pelas relações

a seguir:
(a) x < 2 (b) −1 < y ≤ 2 (c) 0 ≤ x ≤ 1 e 0 ≤ y ≤ 1
(d) y = x

13. Verifique, em cada caso, se a equação determina ou não y
como função de x e, em caso afirmativo, ache uma fórmula
para a função.
(a) 3x2 + y2 = 1; (b) 3x2 + y = 1; (c) y + 1

y − 1 = x;

(d) x = y − 1
y

; (e) xy2 = x−1; (f) x2 +y2 −2y = 0.
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14. Se f(x) = 1 + x calcule f(1), f

(
1
2

)
, 1

f(2) , f(a + b),

f(a) + f(b) e f(a2).

15. Determine o domínio e contradomínio da função f(x) =
1

x − 2 .

16. Calcule os ponto de x em que a função g(x) = x3 − 4x é
igual a zero.

17. Se f(x) = x3 − πx2 + 4x − 2, calcule f(1), f(3), f(−1),
f(a + b) e f( 1

a ), com a ̸= 0.

18. Calcule:
a) f(−1) e f

( 1
2
)

sendo f(x) = −x2 + 2x

b) g(0), g(2) e g(
√

2) sendo g(x) = x
x2−1

c) f(a+b)−f(a−b)
ab sendo f(x) = x2 e ab ̸= 0

d) f(a+b)−f(a−b)
ab sendo f(x) = 3x + 1 e ab ̸= 0

19. Considere a função f(x) = max
{

x, 1
x

}
.

a) Calcule f(2), f(−1) e f
( 1

2
)
.

b) Dê o domínio e esboce o gráfico.

20. Considere a função f(x) = max{n ∈ Z | n ⩽ x}. (Função
maior inteiro.)
a) Calcule f

( 1
2
)

, f(1), f
( 5

4
)

e f
(
− 1

5
)
.

b) Esboce o gráfico.

21. Simplifique f(x) − f(p)
x − p

, com x ̸= p, sendo dados:

a) f(x) = x2 e p = 1
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b) f(x) = x2 e p = −1
c) f(x) = x2 e p qualquer
d) f(x) = 2x + 1 e p = 2
e) f(x) = 2x + 1 e p = −1
f) f(x) = 5 e p = 2
g) f(x) = x3 e p = 2
h) f(x) = x3 e p = −2
i) f(x) = x3 e p qualquer
j) f(x) = 1

x
e p = 1

l) f(x) = 1
x

e p = 2
m) f(x) = x2 − 3x e p = −2
n) f(x 1

x2 e p = 3

o) f(x) = 1
x2 e p = −3

p) f(x) = 1
x

e p ̸= 0

q) f(x) = 1
x2 e p ̸= 0

22. Simplifique f(x + h) − f(x)
h

, com h ̸= 0, sendo f(x) igual
a
a) 2x + 1
b) 3x − 8
c) −2x + 4
d) x2

e) x2 + 3x
f) −x2 + 5
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1.7. Exercícios de Fixação

g) x2 − 2x
h) x2 − 2x + 3
i) −2x2 + 3
j) 2x2 + x + 1
l) x3

m) x3 + 2x
n) x3 + x2 − x
o) 5
p) 1

x
q) 2x3 − x

r) 1
x2

s) 1
x + 2

23. Obtenha o domínio de cada uma das funções a seguir:
(a)

√
x2 − 4 (b)

√
(x − 1)(x + 2) (c) 1

x2 − 4
(d) x√

(x − 1)(x + 2)
(e) x3 − 4x2 + x + 6

x2 + x + 1

(f)
(

x + 1
x − 1

)1/4
(g) x3

|x2 − 25|

24. Determine o domínio e esboce o gráfico.
(a) f(x) = 3x (b) g(x) = −2 (c) h(x) = |x|

(d) g(x) =
{

x se x ≤ 2
−2 se x > 2
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(e) f(x) =

 −2x + 3 se x ≤ 1
1 se 1 < x < 2
2x − 3 se x ≥ 2

(f) h(x) = x2 + 1 (g) f(x) =
√

x + 3

25. Considere a função f(x) = |x − 1| + |x − 2|.

a) Mostre que f(x) =


−2x + 3 se x ⩽ 1
1 se 1 < x < 2
2x − 3 se x ⩾ 2

b) Esboce o gráfico de f .

26. Determine f + g, fg e f

g
explicitando os respectivos

domínios.
(a) f(x) = x e g(x) = x2 − 1 (b) f(x) = x e g(x) = 1√

x

27. Determine as compostas h(x) = f(g(x)) e w(x) = g(f(x)).
(a) f(x) =

√
x − 1 e g(x) = x2

(b) f(x) = 1
x

e g(x) = x3 − x2

(c) f(x) = x + 1
x − 2 e g(x) = 2x + 1

x − 1

28. Dada a função f(x) =
√

1 − x2, calcule f(f(x)).

29. Uma função diz-se par se f(−x) = f(x) para todo x no
domínio de f e diz-se ímpar se f(−x) = −f(x) para todo
x no domínio de f (em cada caso, entende-se que −x está
no domínio de f quando x está). Determine se cada uma
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das seguintes funções é par, ímpar ou nenhuma das duas:
(a) f(x) = x3

(b) f(x) = x(x + 1)
(c) f(x) = |x|
(d) f(x) = x + 1

x
(e) f(x) = |x|3
(f) f(x) = −3 +

√
x + 2

(g) f(x) = 2x − 1
2 − x

.

30. Dada uma função y = f(x), x ∈ R, defina as funções:
g(x) = 1

2 [f(x) + f(−x)] e h(x) = 1
2 [f(x) − f(−x)]. Mostre

que g é par e h é ímpar.

31. Mostre que toda função f : R −→ R se escreve como soma
de uma função par com uma função ímpar.

32. Determine o domínio e contradomínio da função f(x) =√
x − 3.

33. Considere a função g(x) = 2x + 1
x − 4 . Calcule seu domínio e

imagem.

34. Dada a função h(x) = 1
x2 − 1 , determine o domínio e o

contradomínio.

35. Para a função f(x) = x2 − 4x + 5, determine o domínio,
contradomínio e a imagem.
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36. Determine se a função f(x) = −2x + 3 é crescente ou
decrescente.

37. Para a função g(x) = x3 − 3x2, determine os intervalos em
que ela é crescente e decrescente.

38. Verifique se a função h(x) = 1
x

é crescente ou decrescente
no intervalo x > 0.

39. Considere a função f(x) = x4 − 4x3 + 6x2 − 4x + 1.
Determine se ela é crescente ou decrescente.

40. Encontre o valor máximo e mínimo da função f(x) =
x4 − 4x2 + 2 no intervalo [−2, 2].

41. Calcule a função inversa de f(x) = 2x − 5
3 .

42. Encontre a função inversa de f(x) = 2x − 5.

43. Dada a função g(x) = 1
x + 2, determine sua inversa.

44. Se um triângulo equilátero tem lado x, exprima sua área
como função de x.

45. Seja d a distância de (0, 0) a (x, y). Expresse d em função
de x, sabendo que (x, y) é um ponto do gráfico de y = 1

x
.

46. Os lados iguais de um triângulo isósceles tem medida 2. Se
x é a base, exprima a área como função de x.
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47. O perímetro de um triângulo retângulo é 6 e a hipotenusa
é x. Exprima a área como função de x.

48. Um retângulo, cuja base tem comprimento x, está inscrito
num círculo de raio a. Exprima a área do retângulo como
função de x.

49. Um fio de comprimento L é cortado em dois pedaços, e estes
tomam a forma de uma circunferência e de um quadrado.
Se x é o lado do quadrado, exprima a área total englobada
pelas duas figuras como função de x.

50. As leis da Física, muitas vezes, descrevem relações de
proporcionalidade direta ou inversa entre grandezas. Para
cada uma das leis abaixo, escreva a expressão matemática
correspondente.

a) (Lei da Gravitação Universal). Matéria atrai matéria
na razão direta das massas e na razão inversa do
quadrado das distâncias.

b) (Gases Perfeitos). A pressão exercida por uma deter-
minada massa de um gás é diretamente proporcional
à temperatura absoluta e inversamente proporcional
ao volume ocupado pelo gás.

c) (Resistência Elétrica). A resistência de um fio condu-
tor é diretamente proporcional ao seu comprimento e
inversamente proporcional à área de sua seção reta.

d) (Dilatação Térmica). A dilatação térmica sofrida por
uma barra é diretamente proporcional ao compri-
mento da barra e à variação de temperatura.
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51. As emissões de chumbo são uma das principais causas da
poluição do ar nos Estados Unidos. Usando dados colhidos
pela U. S. Environmental Protection Agency na década de
1990, é possivel mostrar que a expressão

N(t) = −35t2 + 299t + 3347

fornece aproximadamente a emissão total N de chumbo
(em milhares de toneladas) ocorrida nos Estados Unidos t
anos após o ano base de 1990.

a) De acordo com esta expressão, qual deveria ter sido o
emissão de chumbo em 1995?

b) De acordo com esta expressão, em que ano da década
de 1990 e 2000 a poluição de chumbo foi maior?

52. Um estudo de eficiência no turno da manhã em uma certa
fábrica mostra que, em média, um operário que chega no
trabalho às 8 h terá montado

f(x) = −x3 + 6x2 + 15x

aparelhos de televisão x horas depois.

a) Quantos aparelhos um operário já montou, em média,
às 10 h da manhã?

b) Quantos aparelhos um operário monta, em média,
entre 9 h e 10 h da manhã?

53. Durante um programa nacional de vacinação da população
contra um certo tipo de gripe, as autoridades descobrem
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que o custo para vacinar x% da população é dado
aproximadamente por

C(x) = 150x

200 − x
milhões de reais.

(a) Qual é o domínio da função custo acima?

(b) Para que valores de x a função C(x) tem significado
neste contxto?

(c) Qual o custo para vacinar os 50% da população?

(d) Que porcentagem da população terá sido vacinada
após serem gastos 37,5 milhões de reais no programa?

54. Durante períodos úmidos, uma fina camada de água
está presente na superfície de folhas e outros detritos
depositados no solo. Esta película é o habitat de numerosas
bactérias, protozoários, fungos, esporos e outros organismos
microscópicos. Pode-se visualizar tais organismos se os
detritos úmidos forem imersos em água contida num prato
de vidro e a extremidade de uma lâmina fina de vidro for
mergulhada nesse prato. Se a lâmina formar um ângulo
α com a superfície horizontal do prato e da sua outra
extremidade deixar-se escoar água límpida, observa-se que
os microorganismos movem-se ao longo da lâmina, em
direção contrária à do fluxo da água (Bandoni e Koske,
1974).

(a) Faça um esboço geométrico do problema.
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(b) Se a distância percorrida pelos microorganismos ao
longo da lâmina é d, calcular a altura vertical h que
é atingida pelos microorganismos.

55. Uma barra vertical de 2m de comprimento produz uma
sombra em um plano horizontal. Os raios da luz solar tem
uma inclinação θ = 67◦ em relação ao plano horizontal.

(a) Faça um esboço geométrico do problema.

(b) Qual o comprimento da sombra?

(c) Qual seria o comprimento da sombra se a barra fosse
horizontal, e o plano vertical de frente para o sol?

56. A velocidade do sangue a r cintímetros do eixo central de
uma artéria é dado pela função S(r) = C(R2 − r2), onde
C é uma constante e R é o raio da artéria. Qual o domínio
desta função? Esboce o gráfico de S(r).

57. O volume V , em cm3, de um vaso sanguíneo cilindrico
é uma função do raio r, em cm. Tal função é dada por
V = V (r) = 8πr3. O que acontece com o volume se o raio
é reduzido pela metade devido ao acúmulo de gordura nos
vasos?

58. A forma de um tumor canceroso é aproximadamente
esférica e, portanto, seu volume é dado, aproximadamente,
por

V = 4
3πr3,
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1.7. Exercícios de Fixação

onde r é o raio do tumor em cm. Quando foi descoberto, o
tumor tinha 0,73cm de raio; 45 dias depois, o raio aumentou
para 0,95cm. Qual foi o aumento de volume do tumor nesse
período?
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CAPÍTULO 2

Funções Polinomiais

As funções polinomiais ocupam um papel central na modelagem
de fenômenos naturais, sociais e tecnológicos. Sua estrutura algé-
brica simples, composta por somas e potências de uma variável
com coeficientes constantes, torna tais funções especialmente
adequadas para representar comportamentos regulares e suaves,
como trajetórias, velocidades, crescimentos, oscilações e muitas
outras relações observadas em contextos científicos.

Exemplo 2.0.1.

(a) Física: o movimento de um corpo sob aceleração constante,
como a queda livre, é descrito por uma função polinomial
de segundo grau:

s(t) = s0 + v0t + at2

2 ,
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2. Funções Polinomiais

onde s(t) representa a posição ao longo do tempo.

(b) Química: funções polinomiais podem modelar taxas de
reação aproximadas ou ajustes experimentais de curvas de
absorção em espectrofotometria.

(c) Biologia: curvas de crescimento populacional podem ser
inicialmente ajustadas por funções polinomiais de grau 2
ou 3 antes de adotar modelos logísticos mais realistas.

(d) Engenharia: em análise estrutural, funções polinomiais de
grau 3 ou 4 são usados para descrever a deformação de
vigas sob carga distribuída.

(e) Economia e Ciências Sociais: ajustes de regressão polino-
mial são frequentemente usados para representar tendências
e fazer previsões com base em dados experimentais.

Além de sua utilidade prática, as funções polinomiais também
fornecem um ponto de entrada fundamental para o estudo do
Cálculo Diferencial e Integral, sendo utilizadas na aproximação
de funções mais complexas (por exemplo, por meio de séries
de Taylor) e na solução de equações diferenciais. No que segue
estuda-se suas principais características e propriedades.

Definição 2.1. Diz-se que f : R → R é uma função polinomial
quando existem números reais an, · · · , a1, a0 tais que, para todo
x ∈ R, tem-se

f(x) = anxn + · · · + a1x + a0.

Se an ̸= 0 diz-se que f tem grau n (Notação: gr.f(x) = n).
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Exemplo 2.0.2. São funções polinomiais:

• f(x) = 5 (constante ou gr.f(x) = 0),

• f(x) = x (identidade, gr.f(x) = 1),

• f(x) = 3x + 2 (afim, gr.f(x) = 1),

• f(x) = x2 + 2x − 1 (quadrática ou gr.f(x) = 2),

• f(x) = x3 + 4x2 + 3 ( gr.f(x) = 3),

• f(x) = 3x5 + 4x4 + πx2 + x

3 + 4
5 (gr.f(x) = 5).

Exemplo 2.0.3. As funções dadas por f(x) =
√

x e g(x) = 1
x

não são polinomiais.

A soma e o produto de funções polinomiais são ainda funções
polinomiais. Nesse caso, vale em geral que:

gr. (f(x) + g(x)) = max {gr.f(x), gr.g(x)}

e
gr. (f(x) · g(x)) = gr.f(x) + gr.g(x).

Um exemplo interessante de produto (ou decomposição
polinomial) é

xn − αn = (x − α)(xn−1 + αxn−2 + · · · + αn−2x + αn−1).

Diz-se que f(x) = xn − αn é divisível por g(x) = x − α.
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Como consequência direta do produto anterior, podemos
escrever para uma função polinomial f de grau n:

f(x) − f(α) = an(xn − αn) + an−1(xn−1 − αn−1) · · · + a1(x − α)
= (x − α)Q(x),

para alguma função polinomial Q de grau n − 1. Ou seja,

f(x) = (x − α)Q(x) + f(α),

para todo x, α ∈ R. Portanto, α é um(a) zero (raiz) de f , isto
é, f(α) = 0, se, e somente se, f(x) é divisível por x − α.

Observação 2.1. O número de zeros de uma função polinomial
f é finito e limitado pelo grau de f .

Para uma função polinomial de grau n, a paridade de n
tem forte influência sobre o gráfico, como apontam os exemplos
abaixo.

Figura 2.1: Gráfico de funções polinomiais.

y = x y = 3x2 − 1
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y = x3 − 2x + 1 y = x4 − 3x2 + 1

Em geral, dada f(x) = anxn + · · · + a1x + a0 uma função
polinomial de grau n, as informações são de grande utilidade

1. Se n é par então, para |x| suficientemente grande, f(x)
tem o mesmo sinal de an. Este sinal é, portanto, o mesmo,
não importando se x < 0 ou x > 0, desde que |x| seja
suficientemente grande.

2. Se, entretanto, n é ímpar, f(x) tem o mesmo sinal de an

para valores positivos muito grandes de x e tem o sinal
oposto de an para valores negativos muito grandes de x.

3. Considere uma função contínua f : R → R. Se existem
α, β ∈ R tais que f(α) > 0 e f(β) < 0, então deve existir
um(a) zero (raiz) de f entre α e β.

Observação 2.2. Este último resultado é de grande relevância,
pois serve de base para diversos métodos numéricos de apro-
ximação de raízes, tanto em procedimentos iterativos manuais
quanto em algoritmos computacionais. Para uma apresentação
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detalhada e aprofundada desses métodos, recomenda-se consultar
a referência (RUGGIERO; LOPES, 1998).

A seguir estuda-se alguns casos particulares de funções
polinomiais de grande interesse para aplicações.

2.1 Função Afim

Definição 2.2. Uma função f : R → R é dita uma função afim
quando existem constantes a, b ∈ R tais que f(x) = ax + b, para
todo x ∈ R.

Ou seja, quando f for uma função polinomial de grau 1 ou 0.

Exemplo 2.1.1. A função identidade f(x) = x é uma função
afim. Nesse caso tem-se a = 1 e b = 0. Também são afins as
translações f(x) = x + b.

Exemplo 2.1.2. Outros casos particulares de funções afins são
as funções lineares f(x) = ax (a ̸= 0 e b = 0) e as funções
constantes f(x) = b (a = 0 e b ̸= 0).

Exemplo 2.1.3. Um exemplo clássico de aplicação das funções
afim é a determinação do preço a pagar por uma corrida de
táxi. Para tanto, considere x a distância percorrida (usualmente
medida em km), o valor inicial b (bandeirada) e o coeficiente a é
o preço de cada km rodado (taxa). Assim, tem-se que o preço a
ser pago pela corrida será f(x) = ax + b.

Exemplo 2.1.4. Em Física, a equação horária do movimento
unidimensional com velocidade constante (movimento retilíneo
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uniforme), que descreve a posição de um objeto em função do
tempo, é uma função afim. Se um objeto se move com velocidade
v, sua posição em relação ao tempo será s(t) = s0 + vt.

É possível, mediante critérios como os que apresentaremos
mais adiante, saber que uma função f : R → R é afim sem
que os coeficientes a e b sejam fornecidos explicitamente. Antes,
vejamos o gráfico de uma função afim.

Considerando a função f : R → R dada por f(x) = ax+b, P1,
P2 e P3 pontos quaisquer do gráfico de f e a noção de distância
no plano, é fácil ver que tais pontos verificam

d(P1, P3) = d(P1, P2) + d(P2, P3),

isto é, supondo d(P1, P3) o maior dos três números, tem-se que
P1, P2 e P3 são colineares. Isso mostra diretamente que o gráfico
de f é uma reta.

Figura 2.2: Gráfico da função afim y = ax + b.

x

y
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Como consequência:

(i) Para que uma função afim f fique inteiramente determi-
nada basta conhecer os valores f(x1) e f(x2) com x1 ̸= x2.
Isto porque o gráfico de f é uma linha reta e, como sabe-
mos, uma reta fica inteiramente determinada quando se
conhecem dois de seus pontos.

(ii) Do ponto de vista geométrico, b é a ordenada do ponto onde
a reta, que é o gráfico da função f(x) = ax+b, intersecta o
eixo OY . O número a chama-se a inclinação, ou coeficiente
angular, dessa reta (em relação ao eixo horizontal OX).

(iii) Quanto maior o valor de a, mais a reta se afasta da posição
horizontal.

Dada uma função afim f(x) = ax + b, o coeficiente a é
denominado coeficiente angular ou declividade da reta
representada no plano cartesiano. Além disso, dados x1 ̸= x2
vale

a = f(x1) − f(x2)
x1 − x2

.

O coeficiente b é denominado coeficiente linear. Além disso,

b = f(0).

Exemplo 2.1.5. Para a função afim f(x) = 2x + 3, temos
a = 2 > 0 e b = 3. Assim, a reta tem inclinação positiva
(ângulo entre a reta e o eixo-x menor do que π/2), e corta o
eixo-y no ponto y = 3.
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2.1. Função Afim

Figura 2.3: Gráfico da função afim y = 2x + 3.

−4 −2 2 4

5

10

x

y

Exemplo 2.1.6. Por sua vez, para f(x) = −x + 5, vale a = −1 <
0 e b = 5. Ou seja, a reta tem inclinação negativa (ângulo entre
a reta e o eixo-x maior do que π/2 e menor do que π), e corta o
eixo-y no ponto y = 5.

Figura 2.4: Gráfico da função afim y = −x + 5.

−4 −2 2 4 6

2

4

6

x

y
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Note que para f(x) = ax + b, com a ̸= 0,

f(x0) = 0 ⇔ x0 = − b

a
,

ou seja, o zero da função afim é dado por x0 = − b

a
.

Teorema 2.1. Seja f : R → R uma função afim, i.e., f(x) =
ax + b, para todo x ∈ R, com a ̸= 0.

• a > 0 se, e somente se, f é monótona crescente.

• a < 0 se, e somente se, f é monótona decrescente.

Tal resultado segue diretamente da expressão

a = f(x1) − f(x2)
x1 − x2

.

Em particular, se a ̸= 0 temos que toda função afim é injetiva.
Além disso, para f : R → R uma função afim, vale ainda
f(R) = R, i. e., se a ̸= 0 toda função afim é sobrejetiva.
Portanto, é também bijeção e, consequentemente, possui uma
função inversa. De fato,

f−1(x) = x − b

a
= 1

a
x − b

a
, x ∈ R.

Note que f−1 também é uma função afim!
Dada uma função f : X ⊂ R → R é de grande interesse

identificar os valores x ∈ X tais que f(x) > 0, f(x) = 0 (zeros
de f) ou f(x) < 0. Resolver este problema significa estudar o
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sinal da função f .

Figura 2.5: Estudo do sinal de uma função f .

x1 x2 x3

f(x) > 0

f(x) = 0

f(x) < 0

f(x) = 0

f(x) > 0

f(x) = 0 x

y

Para a função afim f(x) = ax + b, já vimos que x = − b

a
é o

seu único zero, a ̸= 0. Se a > 0 é imediato que f será monótona
crescente e dessa forma para valores x > − b

a
ocorre ax + b > 0.

Já para x < − b

a
ocorre ax + b < 0. Resultado análogo ocorre

para o caso a < 0, onde nesse caso f será monótona decrescente.
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Figura 2.6: Estudo do sinal da função afim.

− b
a

f(x) < 0

f(x) > 0

f(x) = 0 x

y

a > 0

− b
a

f(x) > 0

f(x) < 0

f(x) = 0 x

y

a < 0

Exemplo 2.1.7. Considere a função dada por f(x) = 2x + 1,
x ∈ R. Temos que f(x) = 0 se, e somente se, x = −1

2 . Desde
que a = 2 > 0, temos

f(x) > 0 ⇔ x > −1
2

e
f(x) < 0 ⇔ x < −1

2 ,

pois f é crescente.

Exemplo 2.1.8. Considere a função dada por f(x) = −2x + 3,
x ∈ R. Temos que f(x) = 0 se, e somente se, x = 3

2. Desde que
a = −2 < 0, temos

f(x) < 0 ⇔ x >
3
2
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e
f(x) > 0 ⇔ x <

3
2 ,

pois f é decrescente.

2.2 Função Linear

A função linear, dada pela fórmula f(x) = ax, é o modelo
matemático para os problemas de proporcionalidade.

Definição 2.3. Diremos que uma função f : R → R é uma
proporcionalidade direta se, para quaisquer números reais c e x,
tem-se

f(cx) = cf(x).

Se
f(cx) = f(x)

c
,

para quaisquer c ̸= 0 e x ̸= 0, diremos que f é uma
proporcionalidade inversa.

Ou seja, duas grandezas são diretamente proporcionais
quando ao multiplicar uma delas por um número real arbitrário
c, a outra também fica multiplicada por este número.

x 7→ y ⇒ cx 7→ cy.

Da mesma forma, duas grandezas são inversamente proporcionais
quando ao multiplicar uma delas por um número real arbitrário
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c ̸= 0, a outra fica multiplicada por 1
c

(isto é, dividida por c).

x 7→ y ⇒ cx 7→ y

c
.

Note que ao se falar em proporcionalidade entre duas
grandezas x e y, é necessário que exista uma relação funcional
entre tais grandezas! Além disso, com base na definição acima,
fazendo x = 1 e a := f(1) vale

f(c) = c · f(1) = ac, ∀ c ∈ R (proporc. direta)

ou
f(c) = f(1)

c
= a

c
, ∀ c ∈ R∗ (proporc. inversa).

Ou seja, f(x) = ax ou f(x) = a

x
.

Fixaremos nossa atenção na proporcionalidade direta, cha-
mada apenas de “proporcionalidade”. Tal conceito é essencial
para entender a conhecida “Regra de Três”. Quando a corres-
pondência x 7→ y, x

′ 7→ y
′ é uma proporcionalidade, a igualdade

y
′

x′ = y

x
permite que se determine um desses quatro números

quando se conhecem os outros três.
x −→ y

=⇒ x · y
′ = x

′ · y ⇔ y
′

x′ = y

x
.

x
′ −→ y

′

Nesse contexto a grande questão é como ter certeza de que
a correspondência x 7→ y é uma proporcionalidade. Para tanto,
considere as situações do exemplo a seguir.
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Exemplo 2.2.1.

1. Situação 1: Uma quantia de R$ 10.000,00 aplicada na
poupança por um certo período rendeu R$ 820,00. Qual
será o rendimento se a quantia aplicada for R$ 15.000,00?

2. Situação 2: Uma quantia aplicada na poupança por 3
meses rendeu R$ 150,00. Qual será o rendimento se o
período de aplicação for de 5 meses? (considere a taxa de
juros constante)

3. Situação 3: Uma bola em queda livre percorre 125 m em
5 segundos. Quanto ela percorre em 10 segundos?

4. Situação 4: Uma empresa asfaltou uma estrada de 36 km
em 14 dias. Em quantos dias ela asfalta uma estrada de
54km?

Em todas as situações acima, temos uma relação funcional
crescente. Mas isso não é suficiente para assegurar que temos
uma proporcionalidade envolvida. Para a primeira situação
acima, note que mantido o mesmo período, se duplicar, triplicar
ou, em geral, multiplicar por qualquer n ∈ N o valor inicial, o
rendimento será também multiplicado pelo mesmo n. O mesmo
ocorre na quarta situação. Assim, essas duas estabelecem uma
proporcionalidade, e desse modo podemos usar a Regra de Três
para resolver o problema. Nas situações 2 e 3 isso não é possível,
pois a relação envolvida não é de proporcionalidade. De fato, na
situação 2, compare o rendimento em 3 e 6 meses. No segundo
período de 3 meses (meses 4, 5 e 6) o rendimento será em
função do valor original somado com 150 de rendimento dos
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primeiros 3 meses. Assim, não será o dobro. Para a situação 3,
compare o deslocamento em 5 e 10 segundos. No primeiro período
a bola parte do repouso e no segundo período a bola “parte”
com a velocidade adquirida do movimento anterior. Assim, o
deslocamento também não será o dobro.

O raciocínio acima é baseado no seguinte resultado:

Teorema 2.2 (Teorema Fundamental da Proporcionalidade).
Sejam x e y grandezas positivas relacionadas por uma função f
(isto é, y = f(x)). Suponha que:

1. f é crescente ou decrescente;

2. f(nx) = nf(x), para todo n ∈ N.

Então, x e y são (diretamente) proporcionais.

Ou mais formalmente, considere R+ o conjunto dos números
reais positivos.

Teorema 2.3. Seja f : R+ → R+ (f : R → R) uma
função crescente ou decrescente. As seguintes afirmações são
equivalentes:

1. f(nx) = nf(x), para todo n ∈ N (n ∈ Z) e todo x ∈ R+
(x ∈ R);

2. Pondo a = f(1), tem-se f(x) = ax, para todo x ∈ R+
(x ∈ R);

3. f(x+y) = f(x)+f(y), para quaisquer x, y ∈ R+ (x, y ∈ R).
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Os teoremas acima são a chave para determinar, em todas as
situações, se estamos ou não lidando com uma proporcionalidade.
Ou seja, se uma dada função é ou não linear. Se queremos saber
se f : R+ → R+ é uma função linear basta verificar duas coisas.

(i) Primeira: f deve ser crescente ou decrescente. (Estamos
deixando de lado o caso trivial de f ser identicamente nula.)

(ii) Segunda: f(nx) = nf(x) para todo x ∈ R+ e todo n ∈ N.
No caso de f : R → R, basta verificar esta última condição
para n ∈ Z e x ∈ R.

Uma consequência direta da caracterização acima para
funções lineares, é a caracterização das funções afim.

Teorema 2.4. Seja f : R → R uma função monótona e injetiva.
Se o valor do acréscimo

f(x + h) − f(x) = φ(h)

depender apenas de h, então f é uma função afim.

Demonstração. A demonstração deste teorema é uma aplicação
do Teorema Fundamental da Proporcionalidade. Note que,
supondo f crescente, temos φ também crescente. Além disso,

φ(h + k) = f(x + h + k) − f(x)
= f((x + k) + h) − f(x + k) + f(x + k) − f(x)
= φ(h) + φ(k).

Logo, φ(h) = ah, com a = φ(1). Pondo b = f(0), temos
f(h) = ah + b. ■
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Dito de outra forma, o teorema acima assegura que aumentos
iguais dados a x correspondem aumentos iguais de y = f(x). Ou
seja, a função afim possui uma taxa de variação constante:

f(x + h) − f(x)
h

= a.

Observação 2.3. A recíproca do Teorema acima também é
verdadeira.

2.3 Função Quadrática

Definição 2.4. Uma função f : R → R chama-se quadrática
quando existem a, b, c ∈ R, com a ̸= 0, tais que

f(x) = ax2 + bx + c,

para todo x ∈ R. Ou seja, quando f é uma função polinomial
de grau 2.

Inicialmente, note que as constantes a, b, c ∈ R acima são
univocamente determinados. Ou seja, se ax2 + bx + c =
a′x2 + b′x + c′, para todo x ∈ R, então a = a′, b = b′ e c = c′.
De fato, para x = 0 segue que c = c′. Logo, considerando x ̸= 0
e usando a Lei do cancelamento obtemos ax + b = a′x + b′.
Fixando-se x = 1 e depois x = −1, temos a = a′ e b = b′.

Observação 2.4. O resultado acima permite estabelecer uma
correspondência bijetiva entre as funções quadráticas e os
trinômios do segundo grau (polinômios de grau 2).

f(x) = ax2 + bx + c 7−→ aX2 + bX + c ≈ (a, b, c)
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O estudo das funções quadráticas tem sua origem na resolução
da equação do segundo grau.

Exemplo 2.3.1. Em textos cuneiformes (Babilônia, há quase
quatro mil anos), encontramos, por exemplo, a questão de achar
dois números, dados sua soma s e seu produto p. Em termos
geométricos, este problema pede que se determinem os lados de
um retângulo conhecendo o semi-perímetro s e a área p.{

x + y = s
x · y = p

Ou seja,

y = s − x ⇒ x · (s − x) = p ⇒ x2 − sx + p = 0.

Note que y = s − x também é uma solução da equação acima.

Exemplo 2.3.2. A função quadrática também surge em Física
nos problemas relacionados ao movimento unidimensional com
aceleração constante (movimento uniformemente variado). Sendo
a aceleração é constante, a(t) = a para todo t > 0, podemos

deduzir a equação horária do espaço: s(t) = s0 + v0t + at2

2 , com
s0 e v0 sendo, respectivamente, a posição e a velocidade inicial.

Uma caracterização importante das funções quadráticas é
a sua conhecida forma canônica. Para tanto, considere o
trinômio

ax2 + bx + c = a

[
x2 + b

a
x + c

a

]
.
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Comparando com
(

x + b

2a

)2
e “completando quadrado”, temos

ax2 + bx + c = a

[
x2 + b

a
x + c

a

]
= a

[
x2 + 2 b

2a
x+ b2

4a2 − b2

4a2 + c

a

]
= a

[(
x + b

2a

)2
+ 4ac − b2

4a2

]
.

Ou seja,

ax2 + bx + c = a

[(
x + b

2a

)2
+ 4ac − b2

4a2

]
.

Esta maneira de escrever o trinômio do segundo grau é
chamada de forma canônica e tem algumas consequências para
a função quadrática. Por exemplo:

• Identificação dos zeros;

• Valores máximo/mínimo globais;

• Não injetividade da função quadrática;

• O gráfico é uma parábola;

• Estudo do sinal.
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De fato, para calcular os zeros de uma função quadrática
f(x) = ax2 + bx + c temos que resolver a equação f(x) = 0.
Considerando a forma canônica acima,

ax2 + bx + c = 0 ⇔
(

x + b

2a

)2
+ 4ac − b2

4a2 = 0

⇔
(

x + b

2a

)2
= b2 − 4ac

4a2

⇔ x + b

2a
= ±

√
b2 − 4ac

2a

⇔ x = −b ±
√

b2 − 4ac

2a
.

A passagem da linha (2) para a linha (3) só tem sentido quando
o discriminante, ∆ := b2 − 4ac, é não-negativo. O caso ∆ < 0
a equação dada não possui solução real. Assim, considerando
∆ = b2 − 4ac e a equação

ax2 + bx + c = 0,

tem-se:

1. ∆ > 0 ⇒ x1 = −b +
√

∆
2a

e x2 = −b −
√

∆
2a

;

2. ∆ = 0 ⇒ x1 = x2 = − b

2a
;

3. ∆ < 0 ⇒ Não existem raízes reais.

101



2. Funções Polinomiais

Para determinar os extremos globais, tem-se o seguinte
resultado.

Teorema 2.5.

(i) Se a < 0, a função quadrática dada por f(x) = ax2 +bx+c

admite valor máximo yM = − ∆
4a

para xM = − b

2a
;

(ii) Se a > 0, a função quadrática dada por f(x) = ax2 +bx+c

admite valor mínimo ym = − ∆
4a

para xm = − b

2a
.

Para a construção do gráfico da função quadrática f(x) =
ax2 + bx + c, deve-se observar:

(a) O gráfico é uma parábola, cujo eixo de simetria é a reta
x = − b

2a
, perpendicular ao eixo-x

(b) Analisar a concavidade: a > 0 ou a < 0;

(c) Analisar os zeros (interseção ou não com o eixo-x): ∆ > 0,
∆ = 0 ou ∆ < 0;

(d) Vértice da parábola (máximo/ mínimo).

Por sua vez, para o estudo do sinal da função quadrática
considere a sua forma canônica

f(x) = ax2 + bx + c = a

[(
x + b

2a

)2
+ −∆

4a2

]
.

Devemos analisar o sinal de a ̸= 0 e do discriminante ∆.
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• CASO 1: ∆ < 0 ⇒. Nesse caso, é suficiente analisar o
sinal do produto

a · f(x) = a2 ·

[(
x + b

2a

)2
+ −∆

4a2

]
.

Para ∆ < 0, temos a · f(x) > 0. Ou seja, o sinal de f(x)
será o mesmo sinal de a para todo x ∈ R.

Figura 2.7: Estudo do sinal para o caso ∆ < 0.

x

f(x) > 0
x

f(x) < 0

Exemplo 2.3.3. Para f(x) = x2 + 1 temos ∆ = −4 < 0. Assim,
como a = 1 > 0, vale x2 + 1 > 0 para todo x ∈ R.

Exemplo 2.3.4. Considere f(x) = −x2 + x − 1. Então, ∆ =
−3 < 0. Como a = −1, segue que −x2 + x − 1 < 0 para todo
x ∈ R.
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• CASO 2: ∆ = 0. Dessa forma, f(x) tem o mesmo sinal
de a para todo x ∈ R \ {x1}, sendo x1 = − b

2a
raiz com

multiplicidade 2 de f(x), pois

a · f(x) = a2 ·
(

x + b

2a

)2
≥ 0.

Figura 2.8: Estudo do sinal para o caso ∆ = 0.

xx1 = x2

f(x) > 0

x

x1 = x2

f(x) < 0

Exemplo 2.3.5. Seja f(x) = x2 + 2x + 1. Então, ∆ = 0. Como
a = 1 > 0, segue que f(x) ≥ 0 para todo x ∈ R. Mais
precisamente, {

f(x) > 0, se x ∈ R \ {−1}
f(x) = 0, se x = −1.
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• CASO 3: ∆ > 0. Nesse caso, é necessário analisar o sinal
do produto a ·f(x) = a2 ·(x−x1)(x−x2), considerando por
simplicidade x1 < x2. Assim, o sinal das diferenças x − xi,
i = 1, 2, e consequentemente de a · f(x), é determinado
conforme x < x1 < x2 ou x1 < x < x2 ou x1 < x2 < x.
Segue que{

a · f(x) > 0, se x < x1 ou x > x2,
a · f(x) < 0, se x1 < x < x2.

Ou seja, o sinal de f(x) será o sinal de a para todo x, se
x < x1 ou x > x2, e será o sinal de −a para todo x, se
x1 < x < x2.

Figura 2.9: Estudo do sinal para o caso ∆ > 0.

xx1 x2

f(x) > 0

f(x) < 0

f(x) > 0

xx1 x2

f(x) < 0

f(x) > 0

f(x) < 0
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Exemplo 2.3.6. Se f(x) = x2 − x − 6, então a = 1 > 0,
∆ = 25 > 0, x1 = −2 e x2 = 3. Segue que x2 − x − 6 > 0
se x < −2 ou x > 3, e x2 − x − 6 < 0 se −2 < x < 3.

Com base no estudo acima é possível resolver diversas
inequações/desigualdades envolvendo funções quadráticas.

2.4 Exercícios de Fixação

1. Estima-se que, t meses a partir de agora, a população de
uma certa comunidade será de P (t) = 20t + 8000.

a) Qual a taxa média que a população estará variando em
relação ao tempo, 15 meses a partir de agora?
b) Por quanto a população variará realmente durante o
16◦ mês?

2. Construa o gráfico das funções lineares abaixo:

(a) y = −3x + 1 (b) y = x

6 − 2 (c) y = 6

(d) y = x

2

3. Uma função linear Q = Q(t) assume o valor Q1 = 88, 3
mg, no instante em que t1 = 14 s e o valor Q2 = 89, 6 mg,
quando t2 = 39 s. Determinar a função linear.

4. Se uma mola helicoidal for distendida sob a influencia
de uma força, seu comprimento será uma função linear
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da força, a menos que a força exceda um certo limite
(lei de Hooke). Seja F a força (medida em Newtons), e
l o comprimento da mola (em cm). Se l0 representa o
comprimento inicial quando nenhuma força está atuando
na mola e a a taxa de aumento do comprimento da mola,
exprimir l em função de F .

5. O lixo sólido gerado a cada ano nas cidades dos EUA está
crescendo. O lixo sólido gerado, em milhões de toneladas,
foi de 88,1 em 1960, e de 234 em 2000. A tendência
mostra-se linear durante este tempo.

a) Construa uma fórmula para a quantidade de lixo
sólido gerado nos EUA.
b) Use está fórmula para prever a quantidade de lixo sólido
gerado nos EUA, em milhões de toneladas, no ano de 2020.

6. Desde o início do mês, o reservatório de água de uma
cidade vem perdendo água a uma taxa média constante.
No dia 12, o reservatório está com 200 milhões de litros
d’água e no dia 21, está com 164 milhões de litros d’água.

(a) Expresse a quantidade de água no reservatório em
função do tempo e desenhe o gráfico associado.
(b) Quanta água havia no reservatório no dia 8?

7. Sejam A, B, C constantes com A ̸= 0 e B ̸= 0. Considere
a equação

Ax + By = C.
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Isolando y na equação acima mostre que y = f(x) é uma
função linear. Determine a inclinação e as interseções de f
com os eixos coordenados.

8. É sabido que 100g de soja seca contém 35g de proteínas e
que 100g de lentilha seca contem 26g de proteína. Homens
de estatura média, vivendo em clima moderado, necessitam
de 70g de proteínas na sua alimentação diária. Suponhamos
que um homem queira adquirir estas 70g de proteínas
alimentando-se de soja e/ou lentilhas. Seja x a quantidade
diária de soja e y a quantidade diária de lentilhas (x e y
medidos em unidades de 100g). Qual a relação entre x e
y?

9. A pressão exercida pela água é proporcional à profundidade
onde é medida. Seja d a profundidade (em metros) e p a
pressão (em atm). Foram feitas as seguintes medidas na
água do mar: d = 98, 0 m, p = 10, 21 atm. Expressar p em
termos de d.

10. Escreva na forma canônica os seguintes trinômios:

a) x2 − 3x + 2
b) x2 − x − 2
c) x2 − 2x + 1
d) x2 − 6x + 9
e) 2x2 − 3x

f) 3x2 + x − 2
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11. Determine as raízes da função polinomial f(x) = x2−5x+6.

12. Construa o gráfico da função g(x) = x3 − 4x + 2.

13. Para a função h(x) = −x2 + 4x − 3, encontre os pontos de
máximo e mínimo.

14. Encontre as raízes e desenhe o gráfico da função f(x) =
x2 − 9.

15. Para cada uma das funções quadráticas abaixo, escreva-
a na forma canônica. A seguir, calcule suas raízes (se
existirem), o eixo de simetria de seu gráfico e seu valor
mínimo ou máximo.

a) f(x) = x2 − 8x + 23
b) f(x) = 8x − 2x2

c) f(x) = 2x2 − 6x + 1
d) f(x) = 2x − x2 − 3

16. Estude a função quadrática f(x) = 3x2 + 5x + 2 quanto
ao sinal. Ou seja, determine os valores de x para os quais
f(x) = 0, f(x) > 0 e f(x) < 0.

17. Resolva as inequações.
a) x2 − 3x + 2 < 0
b) x2 − 5x + 6 ⩾ 0
c) x2 − 3x > 0
d) x2 − 9 < 0
e) x2 − x − 2 ⩾ 0
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f) 3x2 + x − 2 > 0
g) x2 − 4x + 4 > 0
h) 3x2 − x ⩽ 0
i) 4x2 − 4x + 1 < 0
j) 4x2 − 4x + 1 ⩽ 0

18. Com 80 metros de cerca um fazendeiro deseja circundar
uma área retangular junto a um rio para confinar alguns
animais. Quais devem ser as medidas do retângulo para
que a área cercada seja a maior possível?

19. As emissões de chumbo são uma das principais causas da
poluição do ar nos Estados Unidos. Usando dados colhidos
pela U. S. Environmental Protection Agency na década de
1990, é possível mostrar que a expressão

N(t) = −35t2 + 299t + 3347

fornece aproximadamente a emissão total N de chumbo
(em milhares de toneladas) ocorrida nos Estados Unidos t
anos após o ano base de 1990.

(a) De acordo com esta expressão, qual deveria ter sido o
emissão de chumbo em 1995?

(b) De acordo com esta expressão, em que ano da década
de 1990 e 2000 a poluição de chumbo foi maior?

20. A concentração de bactérias num sistema de água público
tem aumentado, o que ocasionou um tratamento com
agentes anti-bacterianos. Bioquímicos responsáveis pelo
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tratamento da água estimam que o número de bactérias
por cm3 pode ser descrito pela função

N(t) = 40t2 − 320t + 1000,

onde t é o tempo em dias de tratamento. A água é consi-
derada imprópria para o consumo quando a concentração
de bactérias excede 720 bactérias por cm3. Quanto tempo
após o início do tratamento a água poderá ser bebida no-
vamente?

21. Em uma determinada cidade, decide-se construir um
parque isolando-se uma área na margem de um rio. São
distribuídos recursos para construir 80 metros de cerca.
A área fechada será um retângulo, mas apenas três lados
serão fechados com cerca - o outro lado será limitado pelo
rio.

(a) Esboce a área cercada.
(b) Qual a área máxima que pode ser fechada desta

forma?

22. Quando fatores ambientais impõem um limite superior
ao número de indivíduos, uma população cresce a uma
taxa que é conjuntamente proporcional ao número de
indivíduos e à diferença entre o limite superior e o número
de indivíduos. Expresse a taxa de aumento da população
em função do tamanho da população. Quando tal taxa de
aumento é máxima?
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CAPÍTULO 3

Funções Exponenciais e
Logarítmicas

As funções exponenciais, assim como as funções afins, possuem
forte relação com problemas envolvendo taxa de variação de
uma grandeza em relação a outra. Entretanto, diferentemente
da função afim, tal taxa não será constante. Fixada a variável
independente h e uma função exponencial f , a variação corres-
pondente da variável dependente f(x + h) − f(x) é proporcional
ao valor da própria variável dependente f(x) (crescimento ex-
ponencial), sendo a constante de proporcionalidade dependente
de h. Ou seja,

f(x + h)
f(x) ,

depende apenas de h, e não de x. Uma referência clássica e
introdutória no tema, pode ser obtida na referência (IEZZI;
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3. Funções Exponenciais e Logarítmicas

DOLCE; MURAKAMI, 2013).

Exemplo 3.0.1. Um exemplo clássico é o da desintegração
radioativa. Os átomos de uma substância radioativa (como
o rádio e o urânio, por exemplo), tendem a se desintegrar,
emitindo partículas e transformando-se em outra substância.
Com o passar do tempo, a quantidade da substância original
diminui. Isto ocorre de tal modo que, em cada instante, a
quantidade de matéria que está desintegrando naquele momento
(taxa de desintegração), é proporcional à massa da substância
original que ainda resta. Ou seja, se designarmos por m = m(t)
a massa da substância radioativa presente no corpo no instante
t, temos que m é uma função monótona injetiva (decrescente)
de t e m(t + h) − m(t) = g(h)m(t), ou ainda,

m(t + h)
m(t) = G(h).

Assim, a perda relativa ocorrida após o decurso do tempo h,
depende apenas de h e não do instante inicial t. Veremos que as
únicas funções com essas propriedades são as do tipo:

m(t) = bat (no exemplo acima tem-se ainda 0 < a < 1).

Seja a um número real positivo diferente de 1.

Definição 3.1. A função exponencial f : R → R de base
a, é a única função que satisfaz as seguintes propriedades
fundamentais:

(E1) Para quaisquer x, y ∈ R, f(x + y) = f(x) · f(y);
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(E2) f(1) = a;

(E3) Se x < y, então
{

f(x) < f(y), quando a > 1
f(x) > f(y), quando 0 < a < 1.

Devido a (E1) e (E2), f não pode assumir o valor 0: Se, por
absurdo, existe x0 ∈ R tal que f(x0) = 0, então

f(x) = f(x0 + (x − x0)) = f(x0) · f(x − x0) = 0, ∀ x ∈ R.

Isso é uma contradição com fato de f(1) = a ̸= 0. Mais ainda:

f(x) = f
(x

2 + x

2

)
= f

(x

2

)
· f
(x

2

)
=
[
f
(x

2

)]2
> 0,

para todo x ∈ R. Assim, diante das propriedades (E1) e (E2),
o contradomínio de f pode ser considerado apenas os números
reais positivos: R∗

+. A vantagem disso é que a função f será
sobrejetora (a demonstração depende de ferramentas do Cálculo
Diferencial e Integral). Com base nas propriedades (E1) − (E3)
e com um argumento similar ao apresentado para “Potências de
Expoente Real” anteriormente, conclui-se que

f(x) = ax, para todo x ∈ R.

Como exemplo, considere n ∈ N:

f(n) = f(1 + 1 + · · · + 1) = f(1) · f(1) · ... · f(1) = [f(1)]n = an.

Os demais casos seguem como acima.
Resumimos a seguir algumas das principais propriedades da

função exponencial:
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3. Funções Exponenciais e Logarítmicas

1. A função f : R → R∗
+ dada por f(x) = ax é não limitada

superiormente;

2. O gráfico da função exponencial, f(x) = ax, é uma curva
contínua no plano;

Figura 3.1: Gráfico da função exponencial.
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x

f(x) = ax

3. A função f : R → R∗
+ dada por f(x) = ax é injetora. Ou

seja, ax1 = ax2 ⇒ x1 = x2 (argumento base para resolver
equações);

4. Além disso, f(x) = ax é sobrejetora, logo uma bijeção entre
R e R∗

+. Consequentemente, possui uma função inversa
g : R∗

+ → R. Fixa-se g := loga (Notação) e, assim,

y = loga x ⇔ ay = x.
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Ou seja, loga x é o expoente ao qual se deve elevar a base
a para obter o número x. Tem-se ainda

aloga x = x e loga(ay) = y.

Quando a = e ≈ 2, 72, denota-se

loge x := ln x (Logaritmo Natural).

As principais propriedades dos logaritmos são:

1. loga 1 = 0;

2. loga a = 1;

3. loga x = loga y ⇔ x = y;

4. loga(xy) = loga x + loga y, para quaisquer x, y ∈ R∗
+;

5. loga

(
x

y

)
= loga x − loga y, para quaisquer x, y ∈ R∗

+;

6. loga xα = α loga x, para quaisquer x ∈ R∗
+ e α ∈ R;

7. loga x = logb x

logb a
(mudança de base);

8. g(x) = loga x é crescente se a > 1 e decrescente se
0 < a < 1.

Exemplo 3.0.2. Resolva a equação 2x = 64.
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3. Funções Exponenciais e Logarítmicas

Solução: Desde que 64 = 26, tem-se

2x = 26 ⇒ x = 6,

pois a função exponencial é injetora.

Exemplo 3.0.3. Idem para 23x−1 = 32.

Solução: Como 32 = 25,

23x−1 = 25 ⇒ 3x − 1 = 5 ⇒ x = 2.

Exemplo 3.0.4. Resolva a inequação 75x−6 < 1.

Solução: Sabemos que log7 1 = 0 e que a função logarítmica
de base a > 1 é crescente. Assim,

75x−6 < 1 ⇒ 5x − 6 < 0 ⇒ x <
6
5 .

Logo, o conjunto solução da inequação em questão será o intervalo

S =
(

−∞,
6
5

)
.

Exemplo 3.0.5. Resolva a equação 3x = 1
2. Usando as

propriedades da função logarítmica, temos

3x = 1
2 ⇒ x = log3 1 − log3 2 = − log3 2 ≈ −0,631.

As funções exponenciais são, juntamente com as funções afins
e as quadráticas, os modelos matemáticos mais utilizados para
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resolver problemas elementares. As funções afins ocorrem em
praticamente todos os problemas durante os nove primeiros anos
do ensino básico (por ex., problemas envolvendo proporcionali-
dade, equações, inequações, ...), enquanto funções quadráticas e
exponenciais aparecem nos três últimos anos (por ex., equações,
inequações, progressões geométricas, matemática financeira, ...).
Uma vez deduzido que o modelo adequado para um determinado
problema é uma função afim, quadrática ou exponencial, o trata-
mento matemático da questão não oferece maiores dificuldades.
A grande questão é como deduzir qual a função matemática
apropriada para o problema em estudo. Por isso as caracteri-
zações apresentadas anteriormente, e a seguir, são de grande
importância.

Teorema 3.1 (Funções Exponenciais). Seja f : R → R∗
+ uma

função monótona injetiva (isto é, crescente ou decrescente). As
seguintes afirmações são equivalentes:

1. f(nx) = [f(x)]n para todo n ∈ Z e todo x ∈ R;

2. f(x) = ax para todo x ∈ R, com a = f(1);

3. f(x + y) = f(x) · f(y) para quaisquer x, y ∈ R, isto é,
transforma soma em produto.

Teorema 3.2 (Funções Tipo Exponencial). Seja g : R → R∗
+

uma função monótona injetiva. Suponha que, para quaisquer
x, h ∈ R, o acréscimo relativo g(x + h) − g(x)

g(x) dependa apenas
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3. Funções Exponenciais e Logarítmicas

de h, mas não de x. Então, se b = g(0) e a = g(1)
g(0) , tem-se

g(x) = bax para todo x ∈ R.

Para a função logarítmica, temos

Teorema 3.3. Seja g : R → R∗
+ uma função monótona injetiva

(isto é, crescente ou decrescente) tal que g(xy) = g(x)+g(y) para
quaisquer x, y ∈ R. Então existe a > 0 tal que g(x) = loga x,
para todo x ∈ R.

A demonstração destes teoremas podem ser obtidas nas
referências (APOSTOL, 1991), ou ainda (LIMA, 2014).

Exemplo 3.0.6. A lei de desintegração do elemento Rádio no
tempo t > 0 é dada por M(t) = Cekt, onde M(t) é a quantidade
de Rádio no tempo t, C e k são constantes positivas. Se a metade
da quantidade inicial M(0) se desintegra em 1600 anos, qual é a
quantidade desintegrada em 100 anos?

Solução: Sabendo que a metade da quantidade inicial se
desintegra em 1600 anos,

M(1600) = C

2 ⇒ Ce1600k = C

2 ⇒ e1600k = 1
2 ⇒ 1600k = ln

(
1
2

)
,

ou seja,
1600k = − ln 2 ⇒ k = − ln 2

1600 .

Assim, a quantidade restante após 100 anos será

M(100) = Ce100k = C · 2−100/1600 = C · 2−1/16.
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3.1. Exercícios de Fixação

Com isso, a quantidade desintegrada é:

∆M = M(100) − M(0) = C · 2−1/16 − C,

isto é,

∆M = C
(

2−1/16 − 1
)

≈ 0,9576 − 1 ≈ −0,0424.

Portanto, aproximadamente 4,24% da massa inicial se
desintegrou após 100 anos.

3.1 Exercícios de Fixação

1. Determine o valor de f(x) = 2x para x = −1, 0, 1.

2. Calcule log2(8) e log10(1000).

3. Se f(x) = ex, calcule f(0), f(1) e f(−1).

4. Verifique se a função g(x) = log3(x) é crescente ou
decrescente.

5. Calcule um valor aproximado para 2π e 2e.

6. Esboce os gráficos das funções f : R → R abaixo:

a) f(x) = 2x

b) f(x) = 2−x

c) f(x) = 3 · 2x−1
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3. Funções Exponenciais e Logarítmicas

d) f(x) = 2x2

e) f(x) = 2−x2

f) f(x) = 21−x2

g) f(x) = 2x − 3

h) f(x) = 3 −
(

1
2

)x

7. Sabendo-se que os gráficos das funções f(x) = ax e
g(x) = x2 − 1 se intersectam em um ponto de abscissa 3,
determine o número a.

8. Resolva as seguintes equações exponenciais:

a) 2x = 64
b) (

√
3)x = 3

√
81

c) 2x = 1
16

d) 8x = 0, 25
e) 23x−1 = 32
f) 112x+5 = 1
g) 811−3x = 27

h) 4x2−1 = 8x

i) (2x)x−1 = 4
j) 32x−1 · 93x+4 = 27x+1
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3.1. Exercícios de Fixação

9. Resolva a equação exponencial

2x−1 + 2x + 2x+1 − 2x+2 + 2x+3 = 120 .

10. De forma similar, resolva as equações exponenciais:

a) 4x − 2x = 56
b) 4x+1 − 9 · 2x + 2 = 0
c) 9x + 3x = 90
d) 4x + 6x = 2 · 9x

11. Resolva o sistema de equações
{

4x = 16y
2x+1 = 4y.

12. Para que valores reais de m a equação 4x − (m − 2) · 2x +
2m + 1 = 0 admite pelo menos uma solução em R.

13. Resolva as seguintes inequações exponenciais:

a) 2x > 128
b) 32x+3 > 243
c) 75x−6 < 1

d) (0, 3)x2−2x−8 ≥ 1
e) 8 < 2x < 32
f) 4 < 8|x| < 32

14. Use as aproximações log10 2 ≈ 0, 301, log10 3 ≈ 0, 477 e
log10 5 ≈ 0, 699 para obter valores aproximados para:
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3. Funções Exponenciais e Logarítmicas

a) log10 9
b) log10 40
c) log10 200
d) log10 3000
e) log10 0, 003
f) log10 0, 81

15. Se A = 5log25 2, determine o valor de A3.

16. Determine o valor de A ∈ R tal que 4log2 A + 2A − 2 = 0.

17. Se loga x = n e loga y = 6n, calcule 3
√

x2y.

18. Construa os gráficos das funções:

a) f(x) = log3 x

b) f(x) = log2 |x|
c) f(x) = | log2 x|
d) f(x) = log2

√
x

19. Determine o domínio das funções:

a) f(x) = log2(1 − 2x)

b) f(x) = log5
x + 1
1 − x

c) f(x) = log10(x2 + x − 12)
d) f(x) = logx+1(2x2 − 5x + 2)

20. Resolva as seguintes equações:
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a) 5x = 4

b) 3x = 1
2

c) 7
√

x = 2
d) 23x−2 = 32x+1

e) 2x = 3x+2

f) 4x − 5 · 2x + 6 = 0
g) 4x + 6x = 9x

h) log2(3x − 5) = log2 7
i) log5(x2 − 3x − 10) = log5(2 − 2x)
j) log3(x2 + 3x − 1) = 2

k) 2 + log3 x

log3 x
+ log3 x

1 + log3 x
= 2

l) logx(2x + 3) = 2

21. Resolva as inequações:

a) log3(5x − 2) < log3 4

b) log5(x2 − x) > log0,2
1
6

c) log 1
3
(2x2 − 7x + 5) ≤ −2

d) (log3 x)2 − 3 log3 x + 2 > 0

22. A população mundial em 1970 foi estimada em 3, 7 × 109

pessoas. A taxa de crescimento anual é aproximadamente
2%. Admitindo-se que a taxa de crescimento permaneça
constante, qual será a população mundial nos anos 1980,
1990 e 2000?
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23. Biólogos afirmam, que sob condições ideais, o número de
bactérias numa cultura cresce exponencialmente. Suponha
que existam inicialmente 2000 bactérias em uma certa
cultura e que existiram 6000 após 20 min. Quantas
bactérias existirão após 1 hora?

24. Uma população de coelhos cresce exponencialmente. Num
primeiro censo haviam 20 coelhos. Um ano após já
haviam 50 coelhos. Obtenha uma fórmula que determine a
quantidade de coelhos em função do tempo t, medido em
anos.

25. Meia-vida de uma substância radioativa é o tempo para
50% de uma amostra da substância se deteriorar. Considere
que a quantidade remanescente de uma certa substância
radioativa, após t anos, é dada por Q(t) = Q0e−0,003t.
Calcule a meia-vida da substância.

26. O rádio se deteriora exponencialmente. Sua meia-vida é
de 1960 anos. Quanto tempo levará para uma amostra de
50g de rádio se reduzir a 5g?

27. O carbono-14 decai exponencialmente a uma taxa constante
de 0, 0121%. Calcule a meia-vida do carbono-14.

28. Em algumas culturas, qualquer quantidade com cresci-
mento exponencial dupicará o seu valor, ou seja, aumentará
em 100%. Como sua taxa percentual de crescimento é cons-
tante, o tempo que a quantidade lavará para se duplicar é
também constante. Este período de tempo é chamado de
tempo de duplicação.

126



3.1. Exercícios de Fixação

(a) Determine o tempo necessário para que uma popula-
ção de tartarugas, descrita pela função

P (t) = 175 · (1, 145)t

duplique seu tamanho inicial.
(b) Qual o tempo necessário para esta população quadru-

plicar seu valor inicial?

29. (UNIRIO/1994) Um explorador descobriu, na selva amazô-
nica, uma espécie nova de planta e, pesquisando-a durante
anos, comprovou que o seu crescimento médio variava de
acordo com a fórmula A = 40(1, 1)t, onde a altura média A
é medida em centímetros e o tempo t em anos. Sabendo-se
que log10 2 = 0, 30 e log10 11 = 1, 04, determine:

a) a altura média, em centímetros, de uma planta dessa
espécie aos 3 anos de vida;

b) a idade, em anos, na qual a planta tem uma altura
média de 1, 6m.

30. Em algumas situações, para expressar certas grandezas,
é mais conveniente empregar as chamadas escalas logarít-
micas do que as escalas lineares convencionais. Este é o
caso, por exemplo, da escala Richter de terremotos. Na
escala Richter, a intensidade I de um terremoto, expressa
em graus, é definida da seguinte forma

I = 2
3 log10

(
E

E0

)
,
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em que E representa a energia liberada pelo terremoto,
medida em kWh, e E0 = 10−3kWh.

a) Qual é a energia liberada por um terremoto de 3 graus
na escala Richter? E por um terremoto de 9 graus?

b) Qual é a relação entre a energia liberada por um
terremoto de grau k e a energia liberada por um
terremoto de grau k + 1 na escala Richter?
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CAPÍTULO 4

Funções Periódicas

As funções periódicas, surgem em diversos contextos do mundo
real. Elas são fundamentais na descrição de fenômenos periódi-
cos, isto é, que se repetem regularmente em intervalos de tempo
constante, tais como as variações diárias na temperatura da
atmosfera terrestre, batimentos cardíacos e outros ritmos biológi-
cos, pêndulos e oscilações de ondas sonoras ou eletromagnéticas,
como pode ser visto de forma básica na referência (DE LUCENA,
2020), ou ainda via transformada de Fourier, como pode ser visto
em (JUNIOR, 2006).

Definição 4.1. Seja T ̸= 0. Diz-se que uma função f : R → R é
periódica de período T , se f(x + T ) = f(x), para todo x ∈ R.

Observação 4.1. Por simplicidade, muitas vezes iremos nos
referir como f , a função f : R −→ R.

Exemplo 4.0.1. Considere a função f(x) = x − [x], onde
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[x] := max{n ∈ Z ; n ≤ x} é a função maior inteiro. Então, f é
periódica de período T = 1, pois [x + 1] = [x] + 1.

Figura 4.1: Gráfico da função f(x) = x − [x].

−3 −2 −1 1 2 3

0.5

1

x

f(x)

Exemplo 4.0.2. Do mesmo modo, a função g(x) ={
1, se x ∈ Q
0, se x ̸∈ Q,

é periódica de período T , para cada T ∈ Q não

nulo.

Figura 4.2: Gráfico da função g.
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4.1. Triângulo Retângulo

Teorema 4.1. Sejam T, c ∈ R não nulos. Se f é periódica de
período T , então:

• f também é periódica de período kT , para todo k ∈ Z não
nulo;

• A função g : R → R dada por g(x) = f(cx), é periódica de
período T

c
.

Observação 4.2. Define-se o período fundamental de uma função
periódica f , como o menor período positivo de f . É muito
comum em Matemática usar apenas a expressão período para
designar o período fundamental.

As funções periódicas mais conhecidas são as funções
trigonométricas reais a valores reais

f(x) = sin x, e g(x) = cos x ,

e suas combinações, como pode ser vista em (DE LUCENA,
2020). Dessa forma, as funções periódicas também são conhecidas
como funções trigonométricas. Tais funções terão maior
destaque ao longo desta seção. Antes de definirmos as funções
trigonométricas, recordamos suas origens na geometria plana
(triângulos e circunferência), como destacado em (IEZZI, 2013).

4.1 Triângulo Retângulo

Inicialmente recorde que ângulo é por definição a região
delimitada por duas semirretas orientadas que compartilham o
mesmo ponto de origem, chamado vértice.
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Figura 4.3: Ângulo AÔB

O A

B

θ

As unidades de medida mais comuns para ângulos são grau,
x◦, e o radiano (Sistema Internacional). Por definição, 1◦ cor-
responde a 1

360 do comprimento da circunferência (independente
do valor do raio), enquanto 1 rad corresponde a um arco de cir-
cunferência cujo comprimento é igual ao raio r da circunferência
(Figura 4.4).

Figura 4.4: Definição de 1 rad.

O

A

B

B′

r

r

A relação entre grau e radiano é dada por:
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4.1. Triângulo Retângulo

360◦ −→ 2π rad
180◦ −→ π rad .

Segue que

1 rad =
(

360
2π

)◦

≈ 57, 3◦.

Vale destacar que a medida de um ângulo (m(AÔB)) é sempre
um número real positivo de modo a satisfazer:

(i) ângulos congruentes tem sempre a mesma medida, e vice-
versa;

(ii) dizer que um ângulo é maior do que outro significa que sua
medida é maior do que a do outro;

(iii) se m(AÔB) é a medida do ângulo AÔB e m(BÔC) é a
medida do ângulo BÔC, então m(AÔC) = m(AÔB) +
m(BÔC).

Figura 4.5: Soma de ângulos adjacentes.

O
A
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Observação 4.3. Diz-se que dois ângulos são congruentes se,
sobrepostos um sobre o outro, todos os seus elementos coincidem.

Observação 4.4. Um ângulo pode ainda ter uma orientação.
Para tanto considera-se um ângulo como os ponteiros de um
relógio. Nesse caso, a orientação é dita positiva se o arco gerador
do ângulo foi construído no sentido anti-horário, e a orientação
será dita negativa se o arco foi construído no sentido horário
(sentido seguido pelos ponteiros de um relógio). Dessa forma
observa-se uma outra maneira de medir ângulos em função da
noção de horas (h), minutos (x′) e segundos (y′′), conforme
abaixo:

1◦ −→ 60
′

= 1 h ⇔ 1
′

−→
(

1
60

)◦

e

1
′

−→ 60
′′

⇔ 1
′′

−→
(

1
60

)′

.

Assim, para expressar a medida do ângulo 56◦48′36′′ em grau
procede-se da seguinte forma,

56◦48
′
36

′′
= 56◦ + 48

′
+ 36

′′

= 56◦ +
(

48
60

)◦

+
(

36
3600

)◦

= 56, 81◦,

onde aplicamos as relações acima usando "Regra de Três"simples.

Um ângulo de 90◦ ou π

2 rad, é dito um ângulo reto e um
ângulo de 180◦ ou π rad, é dito um ângulo raso.
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Figura 4.6: Ângulo reto e ângulo raso.
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B

Ângulo reto

180◦

PQ R

Ângulo raso

Entende-se como um triângulo retângulo, uma figura
plana formada por três ângulos cujos vértices não são colineares,
sendo um deles um ângulo reto. Tais ângulos são entendidos
como os ângulos internos da figura formada. Nesse sentido,
os três segmentos gerados a partir dos vértices são ditos lados
do triângulo e, mais especificamente nesse caso, o lado oposto
ao ângulo reto é chamado de hipotenusa e os demais lados
(adjacentes ao ângulo reto) de catetos.

Figura 4.7: Triângulo retângulo.

A B

C

θ

cateto adjacente

cateto oposto
hipotenusa
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4. Funções Periódicas

O resultado relacionado a triângulos retângulos mais conhe-
cido é o chamado Teorema de Pitágoras, resumido a seguir:

AC
2 = AB

2 + BC
2
,

onde XY indica o comprimento do segmento que parte do ponto
X e chega ao ponto Y .

Considerando o triângulo retângulo acima, fixando-se o ân-
gulo θ = BÂC e tendo em vista a noção de semelhança de
triângulos (proporcionalidade), define-se as razões trigonomé-
tricas:

sin(θ) = cateto oposto
hipotenusa = BC

AC
(seno),

cos(θ) = cateto adjacente
hipotenusa = AB

AC
(cosseno),

tan(θ) = cateto oposto
cateto adjacente = BC

AB
(tangente).

Note que tan θ = sin θ

cos θ
. Outras definições relevantes são:

cot(θ) = 1
tan θ

(cotangente),

sec(θ) = 1
cos θ

(secante),

csc(θ) = 1
sin θ

(cossecante).
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4.1. Triângulo Retângulo

Como consequência do Teorema de Pitágoras, segue a chamada
Relação Fundamental da Trigonometria:

(sin θ)2 + (cos θ)2 = 1.

Esta relação origina a seguinte tabela, que apresentamos de
forma simplificada, e somente para alguns ãngulos mais usuais.

Tabela 4.1: Valores das funções trigonométricas nos arcos
notáveis do 1º quadrante

Razão/ Ângulo 0◦ 30◦ 45◦ 60◦ 90◦

sin θ 0 1
2

√
2

2

√
3

2 1

cos θ 1
√

3
2

√
2

2
1
2 0

tan θ 0 1√
3

1
√

3 −

cot θ −
√

3 1 1√
3

0

sec θ 1 2√
3

√
2 2 −

csc θ − 2
√

2 2√
3

1

Um ponto a ser destacado aqui é que as definições acima
fazem sentido apenas para ângulos com medida entre 0◦ e 90◦ (ou
π/2 rad). No entanto, existem muitas situações onde necessita-se
calcular, por exemplo, cos θ com θ ≥ 90◦.
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4. Funções Periódicas

Exemplo 4.1.1. Uma situação clássica é a de calcular a medida
de um dos lados de um triângulo conhecendo a medida dos outros
dois lados e do ângulo formado pelos mesmos (ângulo oposto
ao lado que queremos calcular). Um problema similar é o de
calcular a medida de um ângulo, dado os três lados do triângulo.

Figura 4.8: Lei dos Cossenos.

ab

c

θ

Para tais problemas tem-se a disposição a chamada Lei dos
Cossenos:

a2 = b2 + c2 − 2bc cos θ.

Nesse caso, em geral, o ângulo θ ≥ 90◦.

Exemplo 4.1.2. Importantes problemas na Física são relacio-
nados ao estudo de materiais elásticos, oscilações e sistemas
massa-mola (osciladores harmônicos). Considere a situação apre-
sentada na figura abaixo. Nesse caso, o deslocamento da massa
presa à uma mola é regido pela Lei de Hooke, que estabelece
que a força aplicada é proporcional ao deslocamento x = x(t),
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4.1. Triângulo Retângulo

Figura 4.9: Deslocamento de uma massa presa à uma mola.

m

m

x(t)

onde t ≥ 0 representa a variável tempo.

Felástica = −kx,

onde k depende do material da mola. Usando a 2a Lei de Newton,
temos que o deslocamento satisfaz a equação diferencial

ẍ + k

m
x = 0,

e portanto,

x = α sin
(√

k

m
t

)
+ β cos

(√
k

m
t

)
,

com α, β ∈ R constantes. Aqui novamente é necessário calcular
seno e cosseno de ângulos com medidas superiores a 90◦.
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4. Funções Periódicas

Dessa forma, a seguir as razões trigonométricas serão
ampliadas para um intervalo maior, a saber, de 0◦ a 360◦ (ou
2π rad), e posteriormente para qualquer valor real (funções
trigonométricas).

4.2 Circunferência

Considerando uma circunferência unitária (raio r = 1) centrada
na origem do plano coordenado

x2 + y2 = 1,

podemos reproduzir as razões trigonométricas apresentadas no
triângulo retângulo de modo a considerar ângulos maiores que
90◦.

Figura 4.10: Ciclo trigonométrico.

x

y

θ
cos(θ)

sin(θ)
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4.2. Circunferência

Para tanto, observe que pela relação fundamental da
trigonometria,

(sin θ)2 + (cos θ)2 = 1 ,

é razoável considerar uma circunferência unitária centrada
na origem. Tal relação indica que para todo ângulo θ
entre 0◦ e 360◦, os números cos θ e sin θ são as coordenadas
de um ponto da circunferência em questão. Dessa forma,
considerando as projeções ortogonais de tal ponto sobre os eixos
coordenados (ver figura acima), fica determinado de modo único
um triângulo retângulo para o qual são aplicadas as razões
trigonométricas anteriores. Tal construção define o chamado
ciclo trigonométrico.

No círculo trigonométrico o ângulo θ passa a ser encarado
como um ângulo central (vértice no centro da circunferência).

Figura 4.11: Ângulo central.

O A

B

θ

Isso permite estabelecer a relação entre grau e radiano via
regra de três, apresentada anteriormente. No que segue considera-
se apenas o radiano como unidade de medida para ângulos.
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4. Funções Periódicas

4.3 Funções Trigonométricas

Para ampliar a definição das relações trigonométricas acima para
todo R, devemos associar a cada número real t um ângulo. Isso
pode ser feito através de uma função especial que faz corresponder
a cada t ∈ R um ponto (x, y) ∈ C, onde C representa o ciclo
trigonométrico anterior, ou seja, C representa a circunferência
unitária centrada na origem do plano coordenado. Tal função
E : R → C ⊂ R2, chamada Função de Euler, é tal que

(i) E(0) = (1, 0);

(ii) para t > 0, E(t) = (x(t), y(t)) será o ponto final após
percorremos sobre a circunferência C, a partir do ponto
(1, 0), um arco de comprimento t no sentido positivo do
ciclo trigonométrico (anti-horário);

(iii) para t < 0, E(t) = (x(t), y(t)) será o ponto final após
percorremos sobre a circunferência C, a partir do ponto
(1, 0), um arco de comprimento |t| no sentido negativo do
ciclo trigonométrico (horário);

Ou seja, a reta real é de certa forma “curvada” sobre o ciclo
trigonométrico.
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4.3. Funções Trigonométricas

Figura 4.12: Função de Euler

(1, 0) = E(0)
x

y

E(t)

E(−t)

t

R

0

t > 0

t < 0

C

E

t
−t

Considerando a função de Euler, as funções cos : R → R e
sin : R → R são definidas pondo-se, para cada t ∈ R,{

cos t = x(t)
sin t = y(t).

Desde que E(t) = E(t + 2kπ), para todo t ∈ R e todo
k ∈ Z, temos que as funções seno e cosseno são periódicas de
período 2π. Aqui, |k| representa o número de voltas em torno
do ciclo trigonométrico, sendo o intervalo [0, 2π] correspondente
a primeira volta. Além disso, para todo t ∈ R vale

(cos t)2 + (sin t)2 = 1.

Com base na função da Euler é possível justificar todas
as propriedades das funções trigonométricas, incluindo as de
simetria e a paridade de tais funções.
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4. Funções Periódicas

Figura 4.13: Funções trigonométricas.

x

y

t

x(t) = cos(t)

y(t) = sin(t)

As demais funções trigonométricas são definidas combinando
as funções cos e sin como antes. Em particular,

tan t = sin t

cos t
.

Abaixo seguem os gráficos das funções sin(t), cos(t) e tan(t).

Figura 4.14: Gráfico das funções trigonométricas.

π
2

π 3π
2

2π

−1

1
t

sin(t)

π
2

π 3π
2

2π

−1

1
t

cos(t)

144



4.3. Funções Trigonométricas

−π − π
2

π
2

π
−1

1
t

tan(t)

Note que a função seno é limitada, pois | sin t| ≤ 1 para todo
t ∈ R. O mesmo vale para a função cosseno. Por conta da
natureza da função tangente, nos pontos π/2 + kπ, (k ∈ Z),
haverão singularidades pontuais, o que justifica a representação
gráfica acima.

Por fim, seguem algumas das fórmulas de adição para seno
e cosseno, que são usadas para simplificar expressões e resolver
equações trigonométricas:

cos(a ± b) = cos(a) cos(b) ∓ sin(a) sin(b),

e
sin(a ± b) = sin(a) cos(b) ± cos(a) sin(b).

Exemplo 4.3.1. Calcule cos(π/4 + π/6). De fato, usando a
fórmula acima,

cos
(π

4 + π

6

)
= cos

(π

4

)
cos
(π

6

)
− sin

(π

4

)
sin
(π

6

)
.
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4. Funções Periódicas

Substituindo os valores:

cos
(π

4

)
=

√
2

2 , cos
(π

6

)
=

√
3

2 ,

sin
(π

4

)
=

√
2

2 , sin
(π

6

)
= 1

2 .

Portanto:

cos
(π

4 + π

6

)
=

√
2

2 ·
√

3
2 −

√
2

2 · 1
2 =

√
6 −

√
2

4 .

Mais detalhes sobre as fórmulas de adição podem ser
encontrados nas referências (IEZZI, 2013), (CARMO, 2005)
e (GUIDORIZZI, 2013).

4.4 Exercícios de Fixação

1. Determine o período da função f(x) = sin(2x).

2. Determine o período, a imagem e faça o gráfico das funções
abaixo:

a) f(x) = 1 + 2 cos 3x, x ∈ R

b) g(x) = 2 cos
(

x − π

3

)
3. Encontre o valor máximo e mínimo da função g(x) =

cos(x) + 1.

4. Determine o domínio da função y = tan x.
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4.4. Exercícios de Fixação

5. Calcule sin
(

π
6
)
, cos

(
π
3
)

e tan
(

π
4
)
.

6. Prove as identidades:

(a) 1 − tan2 x

1 + tan2 x
= 1 − 2 sin2 x .

(b) sin x

csc x − cot x
= 1 + cos x .

(c) sec x · cot x = csc x (x ̸= nπ/2) .
(d) sec2 x = 1 + tan2 x .
(e) csc2 x = 1 + cot2 x .

7. Mostre que:

(a) cos2 θ = 1
1 + tan2 θ

.

(b) sin2 θ = tan2 θ

1 + tan2 θ
.

8. Determine a imagem e faça o gráfico das funções abaixo:

(a) f(x) = | sin x| .
(b) f(x) = cos

(
x − π

3
)

.
(c) f(x) = 1 + cos x .

9. Determine o conjunto dos números reais x para os quais

cos x = −
√

2
2 . Idem para sin

(
2x − π

3

)
= 0.

10. Determine a função inversa de f(x) = sin(x) no intervalo
[−π

2 ,
π

2 ].
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4. Funções Periódicas

11. Um observador em uma planície vê ao longe uma montanha
segundo um ângulo de 15◦ (ângulo formado por um ponto
no topo da montanha, o observador e o plano horizontal).
Após caminhar uma distância d em direção a montanha,
ele passa a vê-la segundo um ângulo de 30◦. Qual é a
altura da montanha?

12. Considere agora que o observador do problema anterior
encontrou um ângulo α na primeira medição e β na segunda
medição. Determine a altura da montanha em função de
α, β e d.
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