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Prefacio da Colecao
Completa

E com grande satisfacio que apresentamos a colecio “Matemdtica
para Ciéncias”, composta por trés volumes cuidadosamente
organizados para oferecer uma formagao consistente, clara e
acessivel em matemaética aplicada as Ciéncias. Esta colegao foi
concebida com atencao especial aos estudantes de cursos fora
das Ciéncias Exatas, reconhecendo a matemética como uma
ferramenta essencial para o progresso académico e investigativo
em suas respectivas areas.

Reconhecemos que, para muitos leitores, até mesmo conceitos
mais béasicos da matemaética podem se apresentar como um
desafio abstrato. Contudo, quando a aprendizagem é conduzida
por abordagens adequadas, a matematica se revela acessivel e
aplicavel, permitindo também que sua dimensao estética e seu
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Preféacio da Colegao Completa

valor cientifico sejam plenamente apreciados.

A Estrutura da Colecao:

Cada volume da cole¢do foi concebido de forma progressiva e
complementar, de modo a proporcionar ao leitor um percurso
natural de aprendizado

viii

e Volume 1 — Fungées: Introducao rigorosa aos conceitos

fundamentais de fungdes, abrangendo defini¢es formais,
dominios, contradominios, imagens e propriedades estrutu-
rais, constituindo a base conceitual indispensavel para o
desenvolvimento da matematica aplicada e tedrica.

Volume 2 — Algebra Linear e Vetores: Apresentacio
sistemdtica dos conceitos de vetores, matrizes, sistemas
lineares e transformacoes lineares, que estabelecem a
estrutura algébrica e geométrica fundamental para a analise
de problemas multivariados e para aplicagoes em diferentes
dominios cientificos e de engenharia.

Volume 3 — Célculo em uma Variavel: Apresentacao
rigorosa dos fundamentos do cédlculo diferencial e integral
em uma variavel, abordando limites, continuidade, deriva-
das e integrais, com énfase tanto na formalizagdo tedrica
quanto nas técnicas de calculo e em suas aplicacoes a mo-
delagem de fendmenos reais.



Abordagem Didatica e Aplicada:

Nos trés volumes, adotamos uma apresentacao clara, com
exemplos contextualizados e exercicios praticos, sempre buscando
aproximar a teoria da realidade. Em vez de tratar a matematica
apenas como abstracdo, privilegiamos a sua utilidade como
linguagem universal para compreender, descrever e prever
fenomenos em contextos cientificos, tecnolégicos e sociais.

A Quem se Destina:

Esta colecao destina-se a estudantes de Matematica, Ciéncias
Naturais, Biolégicas, Sociais Aplicadas e Tecnoldgicas, bem
como a todos que desejam desenvolver uma compreensao sélida
e aplicada da matematica. Se vocé busca um aprendizado
consistente, do fundamental as aplicacbes avancadas, esta obra
foi feita para voce.

Recursos e Apoio ao Leitor:

Os volumes contam com exercicios, exemplos resolvidos e se¢oes
de reforco conceitual, concebidos para apoiar diferentes estilos de
aprendizagem. O objetivo é tornar o estudo ndo apenas possivel,
mas também prazeroso e enriquecedor.

Sua Jornada Matematica:

Esta colegao foi elaborada para acompanhar o leitor em seu
processo de aprendizagem, conduzindo-o gradualmente dos
fundamentos introdutérios ao uso de ferramentas matematicas

ix
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de maior complexidade, que poderdo integrar-se de forma natural
a sua formacgao académica e & sua pratica profissional.

Espera-se que o material aqui apresentado contribua para
o fortalecimento da compreensao conceitual, para o desenvolvi-
mento da confianga no uso da matematica e para o incentivo &
exploragdo de suas aplicagdes e potencialidades.

Boa jornada matematical

Cleyton Natanael Lopes de Carvalho Cunha
Pitagoras Pinheiro de Carvalho
Olimpio Pereira de Sa Neto



Resumo do Volume 1

O Volume 1 — Fungoes, da colecdo Matematica para Ciéncias,
apresenta uma introducdo sélida e acessivel aos conceitos
fundamentais de fungoes, que constituem a base da matematica
aplicada. Com abordagem clara e didatica, este volume
explora o universo das funcoes, suas propriedades, classifica¢oes
e aplicacoes, proporcionando ao leitor tanto a compreensao
tedrica quanto a perspectiva pratica de seu uso na modelagem
matematica.

O livro inicia apresentando o conceito de funcado, enfatizando
sua importancia na descrigdo de relagdes matemaéticas e feno-
menos do mundo real. Sao abordados tépicos como dominio,
imagem, fungoes elementares, compostas e inversas, com exem-
plos que mostram como essas ideias se conectam com problemas
concretos em Ciéncias, Engenharia, Economia e Biologia.

Além da fundamentacao tedrica, o volume dedica atencao
especial a interpretacdo gréafica das fungdes, possibilitando ao

Xi



Resumo do Volume 1

leitor a visualizagao das relagoes, a identificagdao de tendéncias
e a compreensao do comportamento funcional em diferentes
contextos. Fungdes polinomiais, exponenciais, logaritmicas e
trigonométricas sao analisadas detalhadamente, evidenciando
suas aplicagoes praticas e seu papel como alicerce para conceitos
mais avangados, que serao abordados nos volumes subsequentes
da colecao.

Exercicios e exemplos contextualizados e se¢des de reforco
conceitual ajudam a consolidar o aprendizado, tornando o estudo
mais interativo e efetivo. O objetivo é que o leitor ndo apenas
memorize conceitos, mas desenvolva intuicao e habilidade para
aplicar fungoes em situagoes variadas.

Em resumo, este volume oferece uma introducao completa e
envolvente ao mundo das fungées, preparando o terreno para o
estudo de Algebra Linear, Célculo e Equacdes Diferenciais nos
volumes posteriores. E uma obra indispensével para estudantes e
profissionais que buscam construir uma base matematica sélida
e aplicada, essencial para compreender e modelar fenémenos
cientificos de maneira eficaz.

Por fim, destaca-se que todas as figuras apresentadas neste
volume foram elaboradas com o pacote TikZ do IXTEX, contando
com o apoio de ferramentas de Inteligéncia Artificial para sua
concep¢ao e refinamento.
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CAPITULO 1

Numeros e Funcoes

1.1 NuUmeros Reais

O conceito de nimero surgiu da necessidade humana de contar
e medir elementos do cotidiano. Inicialmente, isso era feito de
forma pratica e intuitiva, com o uso de marcas, simbolos e obje-
tos simples. Com o tempo, surgiram os niimeros naturais e os
primeiros sistemas de numeragao, como o sexagesimal dos babil6-
nios e o decimal dos egipcios. No entanto, o entendimento formal
do que é um niimero s6 comegou a ser desenvolvido no século
XIX, quando mateméticos como Cauchy, Cantor, Grassmann,
Dedekind e Peano passaram a buscar uma fundamentacao 1égica
para os conceitos matematicos, transformando a matematica em
uma ciéncia mais rigorosa. Nesse sentido, o sistema numeérico
usual consiste essencialmente em um conjunto, cujos elementos
sdo chamados de nimeros reais, e em duas operac¢des denomi-
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nadas adigdo (+) e multiplicagdo (). A seguir aprofunda-se
um pouco nas caracteristicas e propriedades de tais niimeros.

Seguindo o roteiro historico acima os primeiros nimeros que
conhecemos sdo os chamados nimeros naturais (N), seguindo
com os numeros inteiros (Z), os ntmeros racionais (Q) e os
ntimeros reais (R).

O conjunto dos ntimeros naturais é formado pelos nameros
associados ao processo de contagem, ou seja,

N:{172a3547"'}a

onde cada n € N, com n # 1, pode ser obtido a partir de 1
(“um”) tomando-se o seu sucessor, ou seja, n = p+ 1, para algum
peN.

O conjunto dos niimeros inteiros consiste na unido do conjunto
dos nimeros naturais, dos seus respectivos simétricos aditivos
(—n), e do zero (0),

Z={-,-3,-2-1,01,23, -} =-NU{0}UN.

Aqui surge a noc¢ao de ntimeros positivos (“a direita do zero”)
e negativos (“a4 esquerda do zero”), bem como a operagao de
subtracdo: a —b=a+ (—b).

Os nameros positivos e negativos estao relacionados com a
representacao geométrica de Z conforme apresentado a seguir.

Uma reta x é orientada quando sobre ela se escolheu um
sentido de percurso dito positivo (ver Figura . O sentido
oposto é denominado negativo.
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Figura 1.1: Reta orientada para direita (usual).

Sejam A e B pontos na reta orientada z. Dizemos que B
estd a direita de A (ou que A estd a esquerda de B) quando o
sentido de percurso de A para B coincide com o sentido positivo
escolhido na reta x.

Figura 1.2: Sentido de percurso de A para B.
A B

X

Um eixo é uma reta orientada na qual é fixado um ponto O,
chamado origem.

Figura 1.3: Eixo z.
Q

X

Dessa forma, dado um eixo x a origem O faz-se corresponder
o ntmero zero e a cada ponto A do eixo (a direita ou & esquerda
de O), corresponde um dnico ndmero inteiro a, chamado de
coordenada do ponto A no eixo x.

Definicdo 1.1. Secja a € Z ¢ A € x seu respectivo ponto sobre
o eixo z. Dizemos que a é positivo, denotando por a > 0, se
A estd a direita da origem. Do mesmo modo, diz-se que a é
negativo, denotando por a < 0, se A estd a esquerda da origem.

3
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O simbolo < é denominado “é menor do que” e o simbolo >
é denominado “é maior do que”.

Definicao 1.2. Sejam a,b € Z e A, B seus respectivos pontos

sobre o eixo . Diz-se que a < b em Z se A estd a esquerda de
B.

Tal relacao define uma ordem estrita em Z e formaliza a
interpretagdo geométrica abaixo.
Figura 1.4: Ndmeros inteiros.

] ] ] ] ] ]
T T T

-3 -2 -1 0 1 2 3

N

A ordem estrita definida acima pode ser caracterizada como
segue
a<bsb—a>0&a—-0<0,

ou
a<b<& existec>0talqueb=a+c.

Definicao 1.3. Dados a, b € Z, diz-se que a < b se a < b ou
a=b.

Com respeito a relagdo < destacamos trés fatos importantes:
e Sea<bentdo a+ c < b+ ¢, para todo ¢ € Z.
e Se a <bentdo ac < be, para todo ¢ € Z com ¢ > 0.

e Se a <bentado be < ac, para todo ¢ € Z, com ¢ < 0.
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Observacdo 1.1. Convenciona-se que o < 3 < v abrevia a <
8 e [ <~ Do mesmo modo, a < < ~ significa
a<f e f<yea< <~ significa a<pf e [<r.

Por sua vez, o conjunto dos niimeros racionais consiste nas
chamadas fragoes, associadas a medigoes e formadas a partir
da operacao de divisao entre dois nameros inteiros m e n,
com n # 0. Tal operacdo é definida por m +n =m-n~!, onde
n~! representa o simétrico multiplicativo ou inverso de n. A
existéncia de n~! é a esséncia do conjunto Q. Por simplicidade,

denota-se m +n = — =m/n en~! = —. Dessa forma tem-se
n n
m  p _mg+np
D BT (20, £ 0),
n q ng
m p_ mg—np
M_P_MMZP (g 20,q40),
noq nq
m p  m-p
— = (n#07q7é0)a
n o qg n-q
m/n  m q
plg  n p

.. m . . ;1
Na fragdo —, com n # 0, o inteiro m é dito numerador e o
n
inteiro nao nulo n é dito denominador da fracao.
Note que a “construcao” acima garante que

NcCczZcQ.

Além disso, Q munido das operagdes acima possui as proprieda-
des seguintes:
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(A1)

Associativa: a+b+c=a+ (b+c¢) = (a+b) + ¢, para
quaisquer a,b,c € Q;

Comutativa: a + b = b+ a, para quaisquer a,b € Q;
Elemento neutro: a +0 =0+ a = a, para todo a € Q;

Elemento simétrico: para todo a € Q existe a* € Q, tal
que a + a* = a* + a = 0. Nesse caso, tem-se a* = —a;

Associativa: a-b-c=a-(b-c) = (a-b)-c, para quaisquer
a,b,ce€Q;

Comutativa: a-b=b- a, para quaisquer a,b € Q;
Elemento neutro: a-1=1-a = a, para todo a € Q;
Elemento inverso: para todo a € Q, a # 0, existe a € Q,

tal que a - at =a' - a=1. Nesse caso, tem-se at = -3
a

Distributiva: a- (b+c¢) = a- b+ a - ¢, para quaisquer
a,b,ceQ,

das quais seguem as demais propriedades algébricas.

Exemplo 1.1.1. Uma importante aplicagdo das propriedades
acima, é o processo usual de multiplicacao entre dois niimeros.
Para fixar ideia, considere a multiplicagdo abaixo

23

x 11

23
+23

253
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Formalmente temos:

23.11=23-(1-10+1)
=23.1-10+23-1
—=23-10 + 23
=230 + 23
= 253.

Assim, transladar 23 para esquerda na conta organizada
verticalmente, equivale a escrever 23 - 10.

A relacdo de ordem apresentada acima para os nimeros
inteiros continua valendo para os numeros racionais com a
adicdo de novas propriedades. Em especial, vale para a = m/n,

b=p/qeqQ,
m _p
— < =& mqg < np.
n q
Assim, os ntmeros racionais constituem um conjunto
ordenado, isto é, para cada par de nimeros a,b € Q, uma

e somente uma das relacoes abaixo ocorre
a<b, a=b, a>b.

Tal resultado é denomidado lei da tricotomia. Temos entao
uma representacdo geométrica andloga para o conjunto dos
ntmeros racionais conforme a Figura [L.5

Assim, por sucessivas ampliagoes do conceito de ntimero
chegou-se ao conjunto ordenado Q, o qual estdo bem definidas as
quatro operagoes bésicas da aritmética e N C Z C Q. Com isso

7
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Figura 1.5: Numeros racionais

% Q
2

| |
T T T

-2 -1

|
T

0 1

N[ =
ol 4
N -+

pensou-se que o conjunto QQ supria completamente os problemas
envolvendo contagens e/ou medigdes. No entanto isso nao
ocorreu. Coube a escola pitagérica a descoberta de um segmento
cuja medida nao estava associada a um ntmero racional.

Exemplo 1.1.2. N&o existe d € Q que represente o comprimento
da diagonal de um quadrado de lado 1. Ou seja, em vista do
Teorema de Pitagoras, da relagao de divisibilidade e argumento
de reducao ao absurdo, nao existe um numero d € Q tal que
d? = 2. Portanto, d € Q.

Figura 1.6: Diagonal com medida nao racional.

D C
-2
1 =" 1
A 1 B
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Exemplo 1.1.3. Também néo existe C € Q que represente o
comprimento de uma circunferéncia de raio r € Q.

Dessa forma, entende-se como o conjunto dos ntimeros reais
o conjunto

R=QuQ",

onde Q€ representa o conjunto dos niimeros irracionais. Nesse
novo conjunto, o nimero d dado no Exemplo representa a
raiz quadrada de 2, sendo caracterizado pela identidade

d=V2& d®=2.

Em geral, para cada ntiimero real « > 0en > 2, com n € N,
existe um tdnico 5 > 0 tal que " = «. Assim, define-se

B=vae s =a

Além disso, um numero irracional é caracterizado como um
nimero real que ndo pode ser representado na forma de fracao.

Exemplo 1.1.4. Os exemplos mais conhecidos de ntimeros
irracionais sdo: m = 3,14159 (“pi”), e ~ 2,71828 (ndmero de
Euler), v/2, V/3, /P onde p € N nao é um quadrado perfeito.

Em R sdo bem definidas as quatro operacoes basicas: +, —,
- e =+, bem como as relagoes de ordem <, >, < e > destaca-
das acima. Além disso, sao satisfeitas todas as propriedades
mencionadas anteriormente. Nesse contexto, a representagao
geométrica de R é dita reta real.
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Figura 1.7: Reta real.

Observacio 1.2. A medida que a matematica foi se desenvol-
vendo, surgiram situagoes em que os niimeros naturais, inteiros e
até os reais ja nao eram suficientes para resolver certos problemas.
Um exemplo cléssico é a equacdo z2 + 1 = 0, que ndo possui
solucdo no conjunto dos ntimeros reais. Para lidar com esse tipo
de questdao, os matematicos introduziram uma nova ideia: os
nimeros complexos (C). Os nimeros complexos estendem os
numeros reais ao incluir uma unidade imaginéria, representada
por i, onde i2 = —1. Um ntimero complexo tem a forma a + bi,
onde a e b sdo nimeros reais. Embora inicialmente tenham sido
vistos com desconfianga por parecerem “numeros ficticios”, os
complexos provaram ser extremamente tteis em diversas areas da
ciéncia e engenharia, como na eletricidade, na mecanica quéantica
e no processamento de sinais.

Com o tempo, a busca por representar e manipular feno-
menos ainda mais complexos levou & criacdo dos quatérnios,
desenvolvidos por William Rowan Hamilton em 1843. Os qua-
térnios podem ser vistos como uma generalizagao dos niimeros
complexos, formados por quatro componentes:

q=a+bi+cj+dk,

onde i, j e k sdo unidades imagindrias que obedecem a regras

10
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especificas de multiplicacdo, como ij = k, jk = i, ki = j,
451 = —k, kj = —i, itk = —J.

Ao contrario dos niimeros reais e complexos, os quatérnios
nao obedecem a comutatividade na multiplicagao, ou
seja, a ordem dos fatores altera o produto. Ainda assim,
eles se mostraram extremamente poderosos, especialmente na
representacao de rotagoes no espago tridimensional. Por isso, sdo
amplamente usados em computagdo grafica, robdtica, aviagdo e
realidade virtual. Os nimeros complexos e os quatérnios mostram
que os conceitos numéricos nao sdo fixos, mas sim construgoes
que evoluem conforme surgem novas necessidades matematicas,
cientificas e tecnolégicas. Cada nova ampliacdo do conceito de
ndmero representou um passo importante na consolidacao da
Matematica como uma ferramenta para descrever e compreender
o mundo.

Algebra Basica

Considerando as propriedades algébricas satisfeitas pelos nime-
ros reais apresentadas acima, vale destacar a aplicagdo correta
das mesmas, em especial a propriedade distributiva. Em relagao
a tal propriedade é usual em Matematica a expressao “colocar o
fator comum em evidéncia”, o que nada mais é do que aplicar a
distributividade da multiplicacao em relacao a adigao:

ab+ ac = a(b+ ¢).

Na expressao acima, a é dito o fator comum as duas parcelas e,
assim, pode ser colocado em evidéncia.

11
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Exemplo 1.1.5. Coloque o fator comum em evidéncia nas
expressoes abaixo.

1.3z+6=3x+3-2=3(x+2);
2. 3zh + h? = h(3z + h);
3. bhat + h2z + h'2? = ha(52° + h + hx).

Quando se tratar de uma expressao envolvendo uma fragao,
somente podera ser simplificado o fator que seja comum a cada
uma das parcelas do numerador e do denominador.

2 2
Exemplo 1.1.6. Simplifique a expressio fiﬂ.
z* 4 5z

Solugéo 1.1.1. De fato,
20+ 22z +1) 2241

ri+5r  z(x3+5) 345

As relacoes acima sdo entendidas como expressoes algé-
bricas, isto é, combinagtes de varidveis (letra ou simbolo que
representa um nimero real a ser determinado), constantes (ntme-
ros reais especificados) e as operacdes basicas: adigdo, subtracao,
multiplicacdo, divisdo, potenciacao e radiciacdo. Estas duas
ultimas serao relembradas mais adiante. Nesse contexto, é de
grande valia a aplicacdo da regra de sinais:

a-(=b) =(-a)-b=—(a-b)

a-b=(=a)- (=b),

12
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para todos a, b € R.

Exemplo 1.1.7. Usando a regra acima tem-se
1 —12=-4.3=4-(-3);
2. 16=4-4=(—4)-(—4);
3. —(z4+7) =—x—T,
4. —(—x) = x, para todo x € R.

Além disso, com tal regra é possivel ressignificar o simbolo
“—a” usado para indicar o simétrico aditivo de a € R. De fato,
vale

—a=(-1)-aq,

para todo a € R.
Quanto as operagoes de potenciagao e radiciacdo mencionadas
acima, temos as seguintes defini¢oes e propriedades:

Definicdo 1.4. A poténcia de base a € R, com a > 0, e expoente
n € N, é o nimero real a” tal que

(lea
an+1 :a.an

Dessa definicao decorre que

13
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e, em geral,
a®=a-a-..-a(n—vezes).

Para quaisquer m, n € N e a, b € R positivos tem-se
(P1) a™ - a™ = g™t

(P2) (a-b)"=a™-b",

vy (3) -
(P4) (a™)" = a™™.,

A propriedade (P1) é a propriedade mais importante, pois todas
as outras decorrem dela e a mesma serve como caracterizagao
para a™. Além disso, vale que

ca>l=l<a<a®<---<a"<a"tl<...

e 0<a<l=1>a>a?>>--->a">a"tt > ...

Para o caso em que n € Z, isto é, caso em que n pode ser
negativo ou zero, deve ser mantida a propriedade fundamental
a™ - a™ = o™, Com base nisso, devemos ter a° - ¢ = a®*! = q.
Como a # 0, segue que

a’ =1.

Do mesmo modo,

14
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Assim, para n € N, vale

a® =1,
at = a,
a"tl'=a-a"=a-a-.. a(n— vezes),
L
am’

Temos ainda:

e a™-a" =a™™" VY m, ncZ

e a>1=a"<1l<a" neN;

e 0<a<l=a"<1l<a ™", neN;
o (a™)"=a™", ¥V m, ne€LZ.

. , m .
O casor € Q,isto é, r=— com m € Z e n € N, seguimos
n

as mesmas ideias acima:

Ou seja,

definindo assim a operagao de radiciagao. As propriedades
acima continuam validas. Em especial, a” -a® = a" 7%, para todos

r, s€Q, e
Ya- Vb= Va-b,

Va a
=3 7 b 07
A

15
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(va)" = va,

i/va= "va,
Va=Vb < a=b (a,b>0).

Exemplo 1.1.8. Algumas poténcias importantes (produtos notd-
veis):

(a+b)? = a® + 2ab + b2,

(a —b)? = a® — 2ab + V?,
(a+b)(a —b) = a? — b,
(a+b)3 = a® + 3ab + 3ab® + b3,
(a —b)® = a® — 3a%b + 3ab® — b3.

Exemplo 1.1.9. Com base no exemplo anterior, temos
1. (3z+2)% =922 + 122 + 4,

2. (5y —1)% =25y — 10y + 1,

3. (x+4)(x —4) =22 - 16,

- (

4. (z+2)3 =23+ 622 + 122 + 8.

Exemplo 1.1.10. (z + v2)° = 23 + 322V/2 + 6z + 2/2.

Exemplo 1.1.11. (v/3 — y)3 =3v/3 — 9y + 3v/3y2 — 3.

Exemplo 1.1.12. Uma aplicacdo muito utilizada da nocao de
poténcias é a chamada notagao cientifica. Tal aplicacdo
consiste em uma forma de escrever nimeros muito grandes ou

16
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muito pequenos usando poténcias de 10 com expoente inteiro.
Mais precisamente, um ntimero « > 0 em notacdo cientifica tem
a forma:

a=a-10",

comn €Zel<a<10. Assim, temos em particular

300000 = 3 x 10°,

0,00042 = 4,2 x 1074,
(2 x 10%) - (3 x 10°) = 6 x 10°,

4 x 107
——— =2x10%
ox 105 2 x10

Por fim, no caso de expoente irracional, podemos calcular
a”, com n € Q¢ de forma aproximada. A ideia geral é, dados
um numero real ¢ > 0 e um ndimero irracional n, podemos
construir por meio de aproximagoes sucessivas (“por falta e por
excesso”) de poténcias de a com expoente racional, um tnico
nimero real positivo a™.

Exemplo 1.1.13. Calculo aproximado de 13V2. Temos que
existem nimeros racionais «a, e ,, n € N, tais que

Oén<ﬂ<ﬁn,Vn€N.

Por exemplo:

17
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* Por falta
e a1 =1, a2:1,4:%,
141
o az=1,41= @,4
141
o ay=1,414 = 1000’
o ay=1,4142 = %,
* Por excesso
e f1=2,
15
© B2=15=1,
142
o B3=1,42= 100’
1415
e By=1,415= 1000°
o 05=1,4143 = ?3(1);33,
Segue que

13%» < 132 < 13% n e N.

Assim, podemos definir o valor de 13V2 via aproximagoes por
falta ou por excesso de poténcias de base 13 e expoentes racionais
da seguinte forma:

* Por falta

18
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. 13 =13,

o 1344 = 36,267756667,

o 1341 =37,210039132,

o 134414 =37 59377174,

o 1344142 — 37 613061911, ...

* Por excesso

o 132 =169,

o 1315 = 46, 872166581,

o 13142 = 38, 176803296,

o 131415 = 37,69032163,

o 130413 — 37 622710708, ...

Assim, podemos considerar

13V2 ~ 37.6.

Valor Absoluto e Intervalos

A relacdo de ordem < e a propriedade de tricotomia em R
permitem estabelecer a seguinte definicao.

Definicdo 1.5. Seja € R. Definimos o valor absoluto (ou
médulo) de & como sendo

z, sex > 0;
x| =
—z, sex < 0.

19
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Exemplo 1.1.14. [6| =6¢ | — 7| = —(—7) = 7.

Exemplo 1.1.15. Se = € R é tal que |z| = 4, entdo o ponto na
reta real cuja coordenada é x dista 4 unidades da origem O, ou
seja, ¢ = 4 ou x = —4. Assim, resolver uma equagdo da forma
|z| = m, com m > 0, equivale a = m ou x = —m, isto é, o
conjunto solugdo serd S = {—m, m}.

Exemplo 1.1.16. Seguindo as ideias do exemplo anterior pode-
mos concluir que

lx+4|=2ezr+4=20uz+4=-2,

ou seja,
r=—2o0ux=—6.

Geometricamente |z| pode ser interpretado como sendo a
distancia do ponto P, correspondente a x, a origem O na reta
real, isto é, o comprimento do segmento OP.

Figura 1.8: Interpretacio geométrica de |z|.

0] P
0 r R
—
a

Dado x € R, decorrem imediatamente da definicdo de valor
absoluto as seguintes propriedades

2] = max{a, —a},

20
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|| =0 2 =0.

A seguir listamos mais algumas propriedades importantes do
valor absoluto de um ntmero real.

Teorema 1.1. Sejam a, b, = € R, entdo

1. |ab| = |al[b]-

[\

. |la+0b] <la|] +]b]. (Desigualdade Triangular)
3. SeaeR, coma>0,entdo x| <a<s —a<z<a.
4. Sebe R, com b >0, entdo [z| >b< < —bouxz >b.

A demonstracido do resultado acima segue da defini¢do de
valor absoluto e das prooriedades da relacao de ordem em R.
Vale destacar que as desigualdades em (3.) e (4.) sdo cruciais
na resolugdo de desigualdades ou inequagoes.

ot

Exemplo 1.1.17. Considere a desigualdade |22 + 1| < 4. Usando
a propriedade 3. acima,

Re+1<4de —-4<2x+1<4&

N | Ot

S -0<2x <3 —-<z<

21
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Assim, a solugéo da desigualdade serd o conjunto

5 3
= Ri——<ax<—=5%.
S {xe ; 2_33_2}

Figura 1.9: Interpretagao geométrica do conjunto S.

\
Nt

(]
Q@ viw

R

Observacao 1.3. Sejam A e B dois pontos sobre a reta real com
coordenadas a e b respectivamente. Entao,

d(A,B) :=|a—b| = [b—q

define a distancia (unidimensional) entre A e B.

Figura 1.10: Distancia entre A e B.
A B
a b
|b—al

A relagdo de ordem em R determina ainda importantes
conceitos e subconjuntos em R, a saber, o conceito de conjuntos
limitados e de intervalos.
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Definicdo 1.6. Seja X C R nao vazio.Diz-se que X é limitado
superiormente se existe b € R tal que x < b, para todo x € X.
Cada b com essa propriedade é dito uma cota superior de X.

Da mesma forma,

Defini¢ao 1.7. Diz-se que X ¢ limitado inferiormente se existe
a € R tal que a < z, para todo x € X. Cada a com essa
propriedade é dito uma cota inferior de X.

Definicdo 1.8. Diz-se que X é limitado se for limitado superior
e inferiormente.

Neste ultimo caso, vale a < x < b, para todo x € X. Em
termos do valor absoluto, um conjunto ser limitado significa que
existe C' € R, com C > 0, tal que |z| < C, para todo = € X.

Exemplo 1.1.18.

1
1. X:{;nEN}CRélimitado(azOebzl);
n

2. N C R é limitado inferiormente (a = 1), mas néo é limitado
superiormente.

3. Z e Q sao ambos nao limitados em R;

Definicao 1.9. Um intervalo é um subconjunto I de R com a
propriedade de que para todos z,y € I, se z € R é tal que
r < z<yentdo z € I.

23



1. Numeros e Funcoes

Conforme a limitagdo, os intervalos sdo denotados como
segue:

1- [a,b] ={z eR;a<z<b}.

Figura 1.11: Intervalo fechado e limitado.

a b

R

2- [a,b) ={x e Rja <z < b}.
Figura 1.12: Intervalo (limitado) semiaberto a direita.

a b

R

3- (a,b] ={r e R;ja <z < b}
Figura 1.13: Intervalo (limitado) semiaberto & esquerda.

a b

R

4- (a,b) ={z eR;a <z <b}.
Figura 1.14: Intervalo aberto e limitado.

a b

R
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5- [a,400) ={z € R;a < z}.

Figura 1.15: Intervalo fechado e ndo limitado superiormente.

a

R

6 - (—o0,b) = {z € R;z < b}.

Figura 1.16: Intervalo fechado e ndo limitado inferiormente.

b

R

7- (a,400) ={z € R;a < z}.

Figura 1.17: Intervalo aberto e nao limitado superiormente.

a

R

8- (—o00,b) ={xr € Ryz < b}.

Figura 1.18: Intervalo aberto e ndo limitado inferiormente.

b

R
9- R=(—00,+00).
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Figura 1.19: Reta real.

R

Note que os quatro primeiros intevalos acima sao limitados.
Os intervalos sdo usados frequentemente para representar
conjuntos-solugoes de desigualdades.

Exemplo 1.1.19. Na desigualdade |22 + 1| < 4 resolvida no

5 3
Exemplo [1.1.17] tem-se S = [—2, 2}.

Exemplo 1.1.20. Considere a desigualdade |z% — 4| < 2. Note
que

|22 —4) <2 2<2?-4<22<?<6&

V2 < |21 < V6.

O conjunto solucdo da primeira desigualdade serd S; = {z €

R; x> +v/2ouz < -2}
Figura 1.20: Conjunto Sj.
-2 V2

Py o

xT

Para o conjunto solugdo da segunda desigualdade temos

Sy ={z eR; —V6 <z <V6}.
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Figura 1.21: Conjunto Ss.

-6 V6

T

Note que a desigualdade /2 < lz] < V6 nos diz que as
duas condigoes devem ser satisfeitas simultaneamente. Logo, o
conjunto solugdo é a intersecdo dos conjuntos S; e S, isto é,
S =5,N 5. Logo,

S:{xeR;—\/ESxS—\/iou \@ng\/é}.

Em notacgao de intervalo segue que

S = [-V6,—V2] U [V2,V6].

Figura 1.22: Representagao geométrica da solugao.

-6 -2 v2 V6

1.2 Funcoes Reais de Variavel Real
O conceito de fungdo, junto com sua representacao grafica, é

certamente um dos mais importantes em Matematica e é fer-
ramenta poderosa na modelagem de iniimeros fenémenos. De
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maneira intuitiva, uma fungao relaciona ou faz correspondénci-
a/transformagoes entre dois objetos que podem ter naturezas
diferentes, isto é, que podem pertencer a conjuntos distintos,
porém com uma certa hierarquia de “saida e chegada”, bem
como algumas restrigdes. Isso mostra que o conceito de funcgao
depende fortemente das nog¢des de par ordenado, produto carte-
siano (“hierarquia”) e de relagdo bindria (“correspondéncias ou
transformacoes”).

Um par ordenado é um par de objetos cuja ordem em que
estao listados tem importancia.

Definicao 1.10. Dados A, B conjuntos nio vazios com a, c € A
e b, d € B, definimos o par ordenado (a, b) como sendo um
terceiro elemento associado ao par {a, b} de modo que

(a, b)=(¢c, d) a=ceb=d.

Tal nocao estabelece a como o primeiro e b como segundo
elemento na listagem.

Observacao 1.4.

1. Em geral (a, b) # (b, a), valendo a igualdade se, e somente
se, a = b;

2. (a, b) # {a, b}.

Por sua vez, um produto cartesiano entre dois conjuntos A e
B, é a colegao de todos os possiveis pares ordenados que podemos
formar com elementos desses conjuntos.

28



1.2. Funcdes Reais de Variavel Real

Definicdo 1.11. Sejam A e B conjuntos nao vazios. Chama-se
Produto Cartesiano de A por B ao conjunto

AxB={(z,y); v€Aey€ B}.
Exemplo 1.2.1. Considere A = {1, 3} e B = {1, 2, 3}. Entdo:

AXB:{(lal)a (172)7 (]‘73)ﬂ (371)7 (332)7 (373)}

Bx A={(1,1), (1,3), (2,1), (2,3), (3,1), (3,3)}.

Exemplo 1.2.2. Designamos por R? = {(z,5) ; x, y € R} o
conjunto formado pelos pares ordenados (z,y), onde z e y sdo
numeros reais.

Na linguagem comum o termo “Relagdo” significa “conexao
ou associacao entre objetos”. Dessa forma, uma relagao binaria
R , ou simplesmente relagdo R, entre os elementos de A e os
elementos de B, é uma condicdo ou um conjunto de condi¢bes
que permitem determinar, dados € A ey € B, se x esta ou nao
se relacionando com y segundo R. Esse conjunto de condigoes
define formalmente um subconjunto R C A x B.

A notacdo usual para manipulagdo de relagoes bindrias é
dada a seguir:

2Ry < (z, y) € R <= «x se relaciona com y segundo R.

Exemplo 1.2.3. Sejam A o conjunto de pessoas em uma dada
cidade e B o conjunto formado por todos os niimeros de telefone
disponiveis para tal cidade. Uma relacao imediata entre tais
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conjuntos é T: “tem como nimero de telefone”. Assim, para
r € Aey € B, x T y significa que a pessoa x tem como nimero
de telefone y. Note que em tal relacdo podemos ter pessoas em
A que nao possui ntimero de telefone (elemento em A que néo
se relaciona com nenhum elemento de B) e pessoas com mais de
um ndmero de telefone também (elemento em A que se relaciona
com véarios elementos de B).

Exemplo 1.2.4. Considere o mesmo conjunto A do exemplo
anterior e, agora, o conjunto C' de todos os CPF’s vélidos
registrados na mesma cidade. Considerando a relagdo S: “tem
como CPF”, dizer que x S z, com x € A e z € C, significa que
a pessoa x tem como CPF o niimero z. Cada pessoa tem um
unico CPF (em teoria), e um CPF sé pode estar associado a
uma nica pessoa.

Exemplo 1.2.5. Considerando uma produgéo em pequena escala
de determinado produto, é assegurado que o custo variavel, C,,,
da producao é proporcional & quantidade x produzida. Assim,
denotando por Cf o custo fixo de producéo, temos que o valor
de cada produto fica determinado de modo unico pela relagao
C =0C, 24+ C¢. A relagio C é usada em economia para
representar o custo para produzir x unidades de um produto.

Exemplo 1.2.6. Seja E o conjunto de todas as retas de um plano
a. A relagdo de paralelismo P é definida por

2Py < x coincide com y ou z Ny = (.
Na relagao de paralelismo substitui-se a notacdo P por duas
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barras paralelas //. Assim,
rPysa/ly,

como ¢é usualmente conhecida na literatura. Nesse caso, também
temos retas que nao se relacionam (retas concorrentes, por
exemplo), e retas se relacionando com varias outras.

A relagdo binaria entendida como fun¢io, exige uma corres-
pondéncia para cada elemento da “saida” com um tnico elemento

na “chegada”, como nos Exemplos e

Definicao 1.12. Dados dois conjuntos A e B, uma funcao f de
A em B é uma relagdo que associa cada elemento x € A a um
dnico y € B.

Note que existe uma dependéncia do elemento y € B em
relagdo ao elemento x € A, os quais sao denominados varidvel
dependente e varidvel independente, respectivamente. Assim,
escreve-se y = f(x) em vez de x f y. Em um contexto aplicado,
tais variaveis sao ditas grandezas e podem ser representadas por
outras letras.

A exigéncia de unicidade na definicdo de funcéo evita ambi-
guidades e permite a traducao precisa de inimeros fenémenos
para o contexto matematico.

Exemplo 1.2.7. Da Biologia sabe-se que a taxa de fotossintese
depende da intensidade da luz. Mais especificamente, consi-
derando que para baixos niveis de luz, a taxa aumenta quase
linearmente e para altos niveis de luz existe saturagao, ou seja, a
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planta ndo consegue aproveitar mais luz, deduz-se que a fungao

al

Fh=57

relaciona a intensidade luminosa I com a taxa de fotossintese
F(I), onde a, b € R sdo constantes que dependem da planta e
do ambiente.

Exemplo 1.2.8. Dado um corpo metéalico de comprimento inicial
Ly em processo de aquecimento, tem-se experimentalmente
que o aumento de comprimento do corpo através do aumento
de temperatura ocorre de forma proporcional a variagdo de
temperatura:

AL := Lf - LO = OéLoA717

com Ly = L(T) = comprimento a temperatura T. Como a
temperatura inicial é T = 0, temos

L(T) = Lo + OZL()T = Lo(l + OLT),

para cada T > 0 e « € R fixo (constante de proporcionalidade
ou coeficiente de dilatagdo térmica).

Exemplo 1.2.9. No Exemplo temos a fungdo C := C(z) =
Cy - + Uy representando o custo para produzir x unidades de
um produto (producdo em pequena escala).

Uma forma de representar uma funcéo f de A em B é através
da notagao
f: A — B
z — y=f(w),
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bem como, em casos mais simples, do chamado Diagrama de
Flechas ou Diagrama de Venn.

Figura 1.23: Corresponéncia entre conjuntos com diagrama de
Venn.

A B

>

Nas representagoes acima, o conjunto a esquerda representa a
“saida” ou dominio de f, denotado por Dom(f), e o conjunto &
direita representa a “chegada” ou contradominio f. O simbolo
“—7 e as flechas indicam como cada elemento do dominio é
mapeado para o contradominio (y = f(z)), formando o conjunto
imagem:

Im(f)={y € B; y= f(x) para algum = € A} C B.

Exemplo 1.2.10. Seja X o conjunto dos tridngulos de um plano
a. Se, a cada t € X fizermos corresponder o nimero real f(t) =
area de t, obteremos uma funcdo f : X — R. Neste caso,
Dom(f) =X e Im(f) = (0,400).

Exemplo 1.2.11. A correspondéncia idy : A — A, que para
cada x € A associa o préprio z, isto é, ida(z) = x é uma
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fungéo a qual recebe o nome de fungao identidade de A. Aqui
Dom(f)=1Im(f)=A.

Exemplo 1.2.12. Dados A e B conjuntos e b € B um elemento
fixo, temos que a correspondéncia f : A — B dada por f(z) = b,
para todo z € A é uma funcdo denominada funcdo constante.

Note que Im(f) = {b}.

Exemplo 1.2.13. A correspondéncia f : R — R dada por
f(x) = mz + b, com m, b€ R fixos, define a chamada funcao
afim. Neste caso, Im(f) =R.

Exemplo 1.2.14. A correspondéncia f : R — R dada por
fl@) = apz™ + -+ + a1 + ag, com a,,- - ,a1,a0 € R fixos,
define a chamada fungao polinomial de grau n.

Exemplo 1.2.15. A correspondéncia f : R — R dada por

x, se x>0,
—x, se x<0.

) = 1el = {

define a chamada fung¢do modular e Im(f) = [0, +00).

Vale destacar que, conforme a defini¢do acima, uma fungao
fica inteiramente caracterizada por meio do seu dominio A e
da sua regra de correspondéncia y = f(x). Com isso, fica
estabelecida a nocao de igualdade entre funcgbes: para f e g
fungoes, vale

f=g< Dom(f)= Dom(g) e f(x) = g(x), para todo x.
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Grafico de Funcoes

O gréafico de uma fungdo é a representacdo visual dos pares
ordenados (z, f(x)), mostrando como os valores de chegada f(x)
variam em relacdo aos valores de saida x. Tal recurso auxilia
no entendimento do comportamento da funcdo como um todo,
em especial, crescimento, decrescimento, maximos e minimos,
conforme segOes a seguir.

Para um bom entendimento da representacdo grafica de uma
funcdo, vale relembrar a interpretacio do conjunto R? como
plano coordenado. Sendo R? = {(z,y) ; x,y € R} o conjunto
formado pelos pares ordenados (z,y), onde = e y sdo nimeros
reais, tais pares ordenados sdo representados no plano da seguinte
forma;:

1. considere dois eixos = e y perpendiculares na origem O;

2. dado um ponto P no plano, trace retas paralelas aos eixos
coordenados passando por P;

3. ficam determinados, de modo unico, dois pontos P; e
P> nos eixos z e y, respectivamente, para os quais ja foi
estabelecida uma coordenada em R (reta real);

4. sejam x1 e y; as respectivas coordenadas de Py e Ps.

Assim, cada ponto P no plano fica associado de forma tnica
ao par ordenado (x1,y;1) € R?, onde o niimero z; é dito a
primeira coordenada ou abscissa, e o nimero y; é dito a segunda
coordenada ou ordenada de P.

Referente aos eixos coordenados tem-se
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Figura 1.24: Plano Coordenado.

Y,

P = (z1,1)
Yie----

|

|

|

|

. .
0 T z

e 10 eixo - x os pontos tém coordenadas (z,0),
e 10 eixo - y os pontos tém coordenadas (0, y).

Os eixos ortogonais decompoem o plano em quatro regides
chamadas quadrantes:

o Primeiro Quadrante {(z,y)|z >0 e y > 0}.
o Segundo Quadrante {(z,y)|x <0 e y > 0}.
o Terceiro Quadrante {(z,y)|x <0 e y < 0}.
o Quarto Quadrante {(z,y)|z >0 e y < 0}.
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Figura 1.25: Quadrantes do plano coordenado.

Y

Segundo Quadrante | Primeiro Quadrante

-

Terceiro Quadrante Quarto Quadrante

Estabelecido o plano coordenado, define-se o grafico de
uma fungdo f : A C R — R como o conjunto G(f)
caracterizado como o lugar geométrico descrito pelos pares
ordenados (z, f(z)) € R?, quando x percorre o dominio A.
Formalmente,

G(f)={(z, y) eR*; y = f(z), x € A}
={(z,f(z)); = € A}.
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Figura 1.26: Gréfico de y = f(x).

(z, f(x))

Um dos primeiros recursos para tracar graficos de funcoes
reais é o procedimento baseado em substituicio e interpolacao.
A partir da lei de associacao da fungdo, monta-se uma tabela de
valores e, em seguida, os pontos correspondentes sao marcados
no plano cartesiano e ligados.

Exemplo 1.2.16. Considere a funcdo dada por f(z) = 2z + 1,
definida em R.

z | f(x)
2 -3
1 -1
0] 1
1| 3
2| 5
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Com base na tabela acima, podemos inferir o grafico da fungédo
f(x) =2z 4+ 1 como segue.

Figura 1.27: Grafico de y = 2x + 1.

6 *

Y

v [ J@)
-3 5
-2 0
-1 -3
0 -4
1 -3
2 0
3 5

Assim, como no exemplo anterior, o grafico da fungao f(z) =
2% — 4 serd,
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Figura 1.28: Gréfico de y = 2.

Y

O método acima tem o inconveniente de ser aplicado em casos
bem elementares de fungoes como as fung¢oes polinomiais acima.
Para algumas fungbes pode-se aplicar métodos qualitativos
baseados na nogao de distdncia no plano.

Sejam P; = (x1,y1) e P» = (x2,y2) dois pontos do plano
coordenado e considere @ = (z1,y2). Como d(Py, Q) = |y2 — y1]|
e d(Py, Q) = |x2 — 1] temos, pelo Teorema de Pitdgoras

d(Pr, P2)* = d(P2, Q)% + d(P1,Q)?
& d(P1, P2)? = |za — 21)* + |y — 1 |*-

Portanto,

d(Py, Pp) = \/(Iz —x1)? + (y2 — y1)2.

A expressao acima define a distdncia no plano (bidimensional)
entre dois pontos.
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Figura 1.29: Distancia no plnao coordenado.
Y,
Y1

Y2

Com base na nocdo de distdncia em R?, entende-se por
circunferéncia o lugar geométrico formado pelos pontos do
plano que tém a mesma distdncia a um ponto fixado. Ou seja,
dados um ponto A € R? e um ntimero 7 > 0, a circunferéncia
C de centro A e raio r > 0 é o conjunto dos pontos do plano
situados a distancia r do ponto A:

C={PecR?; d(P,A)=r}.
Entéo, para A = (a, b) e P = (z, y),
PcC&dP,A) =r<dPA)?=r?
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logo,
(x—a)®+ (y—b)? =r%

Com base na descricdo acima podemos ainda obter graficos
de algumas fungoes.

Exemplo 1.2.18. Considere a funcado f : [-1,1] — R dada por
f(z) = /1 —22. Com base na no¢ao de distancia acima segue
que o grafico da fungdo f é uma semi-circunferéncia de centro
na origem e raio 1, situada no semi-plano y > 0. De fato, basta
observar que (z, y) € G(f) se, e somente se, —1 <z < 1le
y =+1—22. Dai, temos y > 0 e 22 + 4% = 1, 0 que caracteriza
a uma semi-circunferéncia mencionada acima.

Figura 1.30: Grafico de y = v/1 — 2.

y

Exemplo 1.2.19. Considerando a funcdo f : R — R dada por
f(x) = 2x+1, vista anteriormente, e Py, P5 e P3 pontos quaisquer
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do grafico de f, entdo tais pontos verificam
d(P17P3) = d(Plu-PQ) + d(P27P3)7

isto é, supondo d(P;, P3) o maior dos trés ntimeros, tem-se que
P, P, e P;3 sao colineares. Isso mostra diretamente que o
grafico de f é uma reta, como observado no Exemplo [1.2.16

Exemplo 1.2.20. O grifico de uma fungdo estd intimamente
relacionado com o dominio da funcao. Isso pode ser notado
considerando a funcdo g : N — R dada por g(n) =2n+1. O
grafico dessa fungdo consiste em um conjunto discreto de pontos
(e ndo uma linha continua).

Figura 1.31: Gréfico de g(n) =2n+1, com n € N.

Y
15 ¢ °
13 7 °
11 + °
9+ °
7+t °
5+ [
3+ °
‘ neN
1 2 3 4 5 6 7

Em matematica ou em aplicagbes na fisica, engenharia e
economia, é comum encontrar graficos de relagdes entre variaveis.
No entanto, nem toda relacdo entre duas varidveis representa
uma funcdo. A ferramenta visual que usamos para isso é o teste
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da reta vertical: Uma relagao é funcao se nenhuma reta vertical
intersecta seu grafico em mais de um ponto.

Figura 1.32: Teste da reta vertical.

E fungdo: f(x) = 22 Nio é fungdo: 22 +3% =1
4 ,,y reta }'(:rfi(:a.l Yreta ‘Vertical
N : .
‘ ‘ 1 i - |
-2 -1 1 2

Observacao 1.5. Vale destacar que uso de tabelas de valores
para a construgao de gréaficos sempre deve ser complementado
com uma andlise qualitativa da funcdo como, por exemplo,
propriedades de crescimento, limitacdo e pontos extremos da
funcéo (conceitos apresentados mais adiante).

Observacao 1.6. A construcao de graficos por meios qualitativos
e quantitativos sao facilitados com as ferramentas do Célculo
Diferencial e Integral.

Observacao 1.7. Nem todos os tipos de graficos usados para
representar informagoes numéricas podem ser interpretados como
graficos de fungoes. Algumas representagdes comuns — como
diagramas de dispersao, histogramas, e graficos de barras —
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exibem relagbes entre variaveis, mas nao satisfazem a definicao
de funcdo. Os gréaficos abaixo representam, respectivamente,
uma fungdo, uma relagdo amostral (diagrama de dispersao) e

dois graficos estatisticos: histograma e grafico de barras.

Figura 1.33: Exemplos de representagoes graficas

f(z) = x (Fungo)

Altura (cm)

Histograma (Nao é funcio)
| | | | |

'
T
I

N

Frequéncia

mANN]

02 24 46 68 810
Nota

Nas sec¢oes seguintes, serao
gerais das fungoes reais de

Diagrama de dispersao (Ndo ¢ fungio)

140 | B
120 - . B
100 | . B
80 - L] A
60 B
0 2 4 6 8 10

Idade (anos)

Gréfico de barras (Néo ¢ fungao)
| | | |

6L

4

Votos

2

0= T T T
Maga Banana Laranja Manga

abordadas apenas propriedades
variavel real, isto é, fungoes
cujo dominio e contradominio sao subconjuntos de R. Do
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mesmo modo, também sera destacado o estudo das principais
funcoes consideradas elementares: afins, quadraticas, modulares,
exponenciais, logaritmicas, trigonométricas. Compreender essas
propriedades gerais é essencial para articulacdo coerente dos
aspectos concreto (aplicagoes), abstrato (relacdo bindria) e
operacional (manipulages algébricas) do conceito de fungao.

1.3 Func¢bées Monoétonas

Algumas funcées possuem certos comportamentos “padroniza-
dos”. Dentre esses, destacam-se os conhecidos como mondétonos,
0s quais estao associados com o estudo de crescimento e o de-
crescimento de fungoes. Sao eles: crescente, nao-decrescente,
decrescente ou nao-crescente. Assim, uma fun¢do mondtona
em um conjunto S C R pode ser crescente, decrescente, nao-
decrescente ou nao-crescente neste conjunto.

Defini¢ao 1.13. Dizemos que uma funcgéo f : X — R é crescente
em um subconjunto S de X, se dados z1,x2 € S vale a seguinte
implicacao

r1 < To = f(l’l) < f(xz)

Isso significa que ao aumentarmos o valor atribuido a x, o
valor de y também aumenta (ver Figura [1.34]).

Exemplo 1.3.1. A funcio y = f(z) = 22 definida em R. Segue
que f é crescente no intervalo S = [0,400). De fato, sejam
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Figura 1.34: Funcdo Crescente.
Y

x1,x9 € S =[0,400), com z1 < 5. Entdo,

$§ — x% = (2 — z1)(z2 + 1) > 0.

Logo, f(z2) > f(z1), mostrando que f é crescente em S. Note
que tal comportamento nao ocorre em todo o seu dominio de
definigao.

Exemplo 1.3.2. A fungao dada por f(z) =3z +1, comz € R, é
crescente. De fato, para 1, o € R com 1 < x9, vale

3r1 < 3x3 = 31 +1 <329 + 1,

ou seja, f(z1) < f(z2). Segue que y = 3z + 1 é mondtona
crescente.

Exemplo 1.3.3. Considere f(x) = /x, definida em [0, +00).
Entdo, se 0 < z1 < 9, entdo /T1 < «/T2. De fato, faca z1 = a2
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e xo = b%. Entdo, 1 < x2 implica em a? — b* < 0. Assim,
procedendo como acima concluimos que a < b. Logo:

flx1) =1 =a < b= x3 = f(x2).
Portanto, f é crescente em [0, 400).

Definicao 1.14. Dizemos que uma func¢ao f : X — R é nao-
decrescente em um subconjunto S de X, se

Vay,x9 € S,11 < 29 = f(x1) < f(22).

Figura 1.35: Fungao Nao-Decrescente

Nesse contexto a fungdo mantém um processo de crescimento,
porém permitindo intervalos onde a fungao sera constante.

Exemplo 1.3.4. Defina:

1, sex <0
flz) =
rz+1, sex>0.
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Entao, f é nado-decrescente. De fato,

o Se x1,2z2 <0, entdo f(x1) = f(z2) = 1;

e Sex; <0<, entdo f(xy) =1<xy+ 1= f(x2);

o Sexy,x0>0ex <mo,entdo f(z1)=xz1+1<aza+1=

f(z2).

Figura 1.36: Gréfico de y = f(z).

Y

He

Definicao 1.15. Dizemos que uma fungdao f : X — R é
decrescente em um subconjunto S de X, se

Vo, xze € 8,21 < z2 = fx1) > f(z2).
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Figura 1.37: Funcao Decrescente

Ou seja, ao aumentarmos o valor atribuido a z, o valor de y
diminui.
1
Exemplo 1.3.5. Considere f(z) = —, com dominio (0, +00).
x
Entao, se 0 < 1 < x3, segue das propriedades dos niimeros reais
que
1

;1 > CULQ = f([L’l) > f($2)

Portanto, f é decrescente.

Exemplo 1.3.6. Dada uma fungéo crescente f em um dominio
I C R, segue que —f é decrescente no mesmo dominio. Assim,
g(z) = —2% e h(z) = —/x sdo decrescentes em I = [0, +0o0).

Definicao 1.16. Dizemos que uma funcgido f : X — R é nao-
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crescente em um subconjunto S de X, se

Vay, 29 € S,21 < 29 = f(x1) > f(22).

Figura 1.38: Funcao Nao-Crescente

sex <1

, sex>1,
segue que

o sexy,xo < 1, entdo f(z1) = f(zz) = 3;

1
e sex; <1<z, entdo f(x1) =3>— = f(x2);
T2
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1 1
e sexy, o >1ex; < xo, entdo — > — = f(x1) > f(x2).
€ Z2

Portanto, f é nao crescente.

Observacao 1.8. Toda funcao crescente em um conjunto S
é também nao-decrescente nesse conjunto, e toda funcao
decrescente em S é também nao-crescente. Além disso, como
observado no exemplo abaixo, algumas fun¢des podem néo ser
mondtonas em todo o seu dominio.

Exemplo 1.3.8. Considere f(x) = 2%, definida em R. Em
(—00,0], se 1 < 9 < 0, entdo 23 > 23 = f(x1) > f(x2),
ou seja, f é decrescente. Agora em [0,400), se 0 < x1 < xa,
entdo 22 < 22 = f(x1) < f(z2), ouseja, f é crescente. Portanto,
f(z) = 22 é decrescente em (—oo,0] e crescente em [0, +00).

1.4 Funcoées Limitadas
Definicdo 1.17. Diz-se que uma fungdo f ¢é limitada, se seu

conjunto imagem, Im(f), é um conjunto limitado. Caso
contrario, a funcao f serd dita ilimitada.

Das propriedades do valor absoluto e da nogao de intervalos
em R, tal defini¢do é equivalente a:

1. existir um intervalo aberto I = (a,b), a, b € R, tal que
Im(f) C (a,b); ou ainda,

2. existir K > 0 tal que [f(z)| < K, para todo x € Dom(f).
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Assim, o grafico de uma funcdo limitada sempre estard contido
em uma faixa horizontal do plano.

4
z ~
W (§ ( ) = m sao
limitadas em R. Neste caso, tem-se I'm(f) C [—1,1], isto é,
|f(z)| <1 para todo z € R, eIm( ) C [0, 1].

Exemplo 1.4.1. As fungoes f(z) =

Figura 1.39: Funcoes limitadas.
1 1T

1
Exemplo 1.4.2. A funcéo dada por h(z) = — ¢é ilimitada em R.
x

De fato, basta observar que para valores de x suficientemente
préximos de 0, os valores correspondentes de y tornam-se
arbitrariamente grandes. Assim, ndo existe nenhuma faixa

1
horizontal do plano que contenha o grafico de y = —.
x
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1
Figura 1.40: Grafico de y = —.
x

Com base na nogao de fungoes limitadas, podemos definir
as nogoes de maximo e minimo de uma fun¢do. Ao longo da
disciplinas de Célculo Diferencial e Integral, serd de grande
importancia o cdlculo dos pontos de méximo e de minimo de
uma fungdo, caso existam. Tal estudo sera fortemente auxiliado
pela nogado de derivada de uma funcgdo.

Seja I um intervalo e f : I — R uma funcao.

Defini¢ado 1.18. Dizemos que xy € I é um ponto de maximo
local de f, se existir 6 > 0 tal que f(z) < f(zg), para todo
x € (xg— 0,20+ 9) C I. Neste caso, diremos que f(zg) é o valor
méximo local.
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Definicao 1.19. Dizemos que 2y € I é um ponto de minimo
local de f, se existir 6 > 0 tal que f(x) > f(x0), para todo
x € (xg — 0,209+ 0) C I. Neste caso, diremos que f(zg) é o valor
minimo local.

Definicao 1.20. Dizemos que xo € I é um ponto de maximo
global de f, se f(z) < f(xo), para todo x € I. Assim, diremos
que f(xg) é o valor maximo global.

Definicao 1.21. Dizemos que 2o € I é um ponto de minimo
global de f, se f(x) > f(xo), para todo « € I. Do mesmo modo,
diremos que f(xg) é o valor minimo global.

Um ponto xg € I serd dito um ponto extremo local, se xg
for um ponto de méximo local ou um ponto de minimo local. Do
mesmo modo, um ponto zy € I serd dito um ponto extremo
global, se zg for um ponto de maximo global ou um ponto de
minimo global.

Exemplo 1.4.3. Considere a func¢io f : (—1,6] — R dada por

flz) = 3x—x2, sex <2
S| lz—4+1, sex>2.

Nesse caso, a funcao f
. (. 3
e possui um méaximo local em xg = oL
e possui minimos locais em 1 = 2 e x5 = 4;
e possui um maximo absoluto em x5 = 6;

e nao possui minimos absolutos.
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Figura 1.41: Méaximos e minimos de f.

Y

N W

1.5 Operacoes com Funcoes

Dadas as fungoes f,g: X — R podemos definir novas fungoes

f+ g a fungao soma de f com g, f — g a funcao diferancga

de f com g, f-g a funcdo produto de f por g, e = a fungao
g

quociente de f com g da seguinte forma:
(@) (f +9)(@) = f(z) +g(z);
(b) (f —9)(x) = f(z) — g(x);

(©) (f-9)(@) = f(z) - g(x);
@ (£) @)=L s gt 20



1.5. Operagdes com Funcdes

Em geral as fungoes f e ¢ na definicdo acima podem ter
dominios diferentes, Dom(f) e Dom(g), respectivamente. Nesse
caso, as operagoes acima ainda podem ser consideradas desde
que

x € Dom(f) N Dom(g).

Exemplo 1.5.1. Counsidere as fungées dadas por f(z) =+/7—z
e g(x) = Vv — 2, entdo Dom(f) = (—o0, 7], Dom(g) = [2,+0)
e Dom(f) N Dom(g) = [2,7]. Temos que,

(F+9)@) =vT— 2+ Va2

(f-9)(@) = V(7 —2)(z —2) = V-2 + 9z — 14,
ambas definidas para 2 < z < 7.

Exemplo 1.5.2. Considerando duas fungdes polinomiais, pode-
mos considerar uma nova fungdo chamada fung¢ao racional

P(x)  apx"+---+a1x+ao
Q@) bpa™ 44 bzt by

definida para todo = € R tal que Q(x) # 0.

Outra operacao com fungoes de grande importancia consiste
em obter a funcdo composta de duas fung¢ées dadas.

Definicao 1.22. Dadas fungoes f : X — Y eg: Z — R,
com Y C Z. Dado z € X, podemos definir uma nova fungao
h: X — R pondo h(x) = g(f(x)). Tal fungdo é denominada
funcao composta de g com f e serda denotada por go f.
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Assim,

(go f)x) = g(f(x)) = g(u).

Figura 1.42: Diagrama associado a fungdo composta g o f.

gof

Exemplo 1.5.3. Se f e g sdo definidas por f(z) = 2% e g(x) = /7,
entao

(go @) = Va2 =|a|.
Note que o dominio de g é [0, +00), desde que x? > 0 para todo
z € R. Logo, a fungdo composta acima estd bem definida.

Exemplo 1.5.4. Se f(z) = 2z + 1 e g(z) = 2? + 3z, entdo
(gof)(z) = g(2z+1) = (22 +1)2+3(2z+1) = 422+ 102 +4. Do
mesmo modo temos: (fog)(z) = f(z%+3z) =2(2® +3z) + 1 =
222 + 62 + 1.

Note que, em geral, go f # f o g, isto é, a composicao
de fungdes nao é comutativa. Entretanto, vale a propriedade
associativa para tal operagdo (verifique!).

Exemplo 1.5.5. Considerando f(z) = :ULH’ g(z) = 219 e
h(z) = x4 3, temos
(fogoh)(x) = f(g(h(x)))
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= f(g(z +3))

=f((z+3)")
(x4 3)10

(x+3)104+1

1.6 Funcao Inversa

Em muitas situagdes nas ciéncias exatas, é comum querermos
“desfazer” uma transformacgdo matemadtica aplicada a uma
variavel. Por exemplo, se conhecemos a relagdo entre o tempo
e a posicao de uma particula dada por uma funcao f, pode ser
necessario determinar o instante exato em que a particula atingiu
uma determinada posigdo, isto é, inverter a fungéo original. A
noc¢ao de funcao inversa formaliza essa ideia. Assim, dado um
processo f que associa a cada entrada  uma unica saiday = f(z),
a funcao inversa associa, sob certas condigoes, y de volta ao valor
original x.

O estudo das fungoes inversas é fundamental em diversas
areas da ciéncia, como na resolucao de equagoes, na modelagem
de sistemas fisicos ou na andlise de dados experimentais. Para
que uma funcdo admita inversa, ela deve ser bijetiva, ou seja,
injetiva e sobrejetiva. No entanto, em muitos contextos cientificos,
mesmo fungdes que nao sdo invertiveis globalmente podem ser
invertidas localmente em trechos de seu dominio.

Estuda-se a seguir o conceito de fungao inversa, bem como
os critérios que garantem sua existéncia, e sua representagao
grafica.
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Definicao 1.23. Dizemos que f : X — R é injetiva, se elementos
diferentes de X sao transformados por f em elementos diferentes
em R. Ou seja,

Vo, xo € X, 11 # 12 = f(21) # f(22).

Uma forma equivalente (contrapositiva): Dizemos que f :
X — R é injetiva, se

VQ?l,l’Q S X,f(iEl) = f(JUQ) = T1 = Ta.

Exemplo 1.6.1. A funcdo f : R — R definida por y = f(x) =
2x+1 é injetiva. De fato, sejam x1, 22 € R tais que f(z1) = f(z2).
Temos:

201 + 1 =2x9 + 1 = 221 = 229 = 1 = Xo.

Exemplo 1.6.2. Considere a fungdo f : [0,4+00) — R definida
por y = f(r) = 22. Entdo, f é injetiva. Para provar isso sejam
21,2 € [0,400) tais que f(z1) = f(z2). Temos:

22 =25 = (11 —20)(x1 +12) =0 = 21 = 29 ou T = —a.
Como z1,z2 € [0,400), segue que 1 = x9, garantindo a
injetividade da funcdo em questao.

Outra forma de provar que a funcao do exemplo acima é
injetiva é, dados 1,22 € [0, +00) com z1 < x2 (sem perda de
generalidade), observar que f é crescente. Assim, segue que

f(w1) < f(x2) e, portanto, f(x1) # f(x2).
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Definicao 1.24. Dizemos que f : X — R é sobrejetiva, se sua
imagem ¢é igual ao contradominio. Ou seja, para todo y € R,
existe (pelo menos um) z € X tal que f(x) = y.

Exemplo 1.6.3. A fun¢do f : R — R definida por y = f(x) =
2z 4 1 é sobrejetiva. Seja y € R. Devemos investigar a equacao
f(z) =y. Com efeito,

-1
2x+1:y=>x=yT.

-1
Assim, existe z = yT € R tal que f(z) = y. Logo, f é

sobrejetiva.

Observacao 1.9. Mostrar que a fungéo f : [0, +00) — [0, +00)
definida por y = f(z) = 22 é sobrejetiva é bem mais complicado!
Serd necessario utilizar a nogdo de fungdes continuas, que serd
estudada posteriormente.

Defini¢do 1.25. Uma funcao f : X — R é bijetiva, se for injetiva
e sobrejetiva. Ou seja, se

Vay, w0 € X, 21 # 20 = f(21) # f(22)

vV y € R, existir (pelo menos um) = € X tal que f(z) = y.

Exemplo 1.6.4. A funcéo f: R — R dada por f(z) =2z +1¢
bijetival

61



1. Numeros e Funcoes

Note que a no¢ao de bijetividade, assim como a de injetividade
e a de sobrejetividade, depende do dominio da funcao em
estudo.

Exemplo 1.6.5. Considere as fungdes f : R =+ Re g : [0, +00) —
[0, +00) ambas definidas por y = z2. Entdo, f ndo é bijecio
(pois néo ¢é injetiva e nem sobrejetiva), enquanto g é bijegao.

Estabelecida a nogao de fungdes compostas e de fungoes
bijetivas, estamos em condigoes de definir e caracterizar o que
se entende por fungdo inversa.

Definicao 1.26. Dizemos que uma funcao f : X — Y é inversivel
se existe uma funcdo g : Y — X tal que

(go f)(x) =g(f(z)) =z, para todo x € X

(fog)y) = f(g(y)) =y, paratodoy €Y.

A funcdo g é chamada de inversa de f e denotada por f~!.
Assim,
g=1r"
Em particular, f~! funcdo inversa de f é caracterizada por
y=fl2) =y ==

Observacao 1.10.

1. Note ainda que

Flof=idy] e fof ' =idy.

1 Fungio identidade, isto é, idx : X — X eidx(z) = x para todo = € X.
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1.6. Funcao Inversa

2. Nao é dificil provar que a funcao inversa de f, quando
existe, é Unica.
Exemplo 1.6.6. A funcdo f: R — R dada por f(z) =2z +1¢
z—1
2

inversivel. Nesse caso, a fungéo g : R — R dada por g(x) =
é tal que

(90 1)) = g(f (@) = g(20 +1) = T D=Ly

1 y—1

(fog)y) = flg(y) = f (y;> =2 (2> +1=y,

para todos x,y € R. Assim, podemos escrever

r—1

F7H@) = g(x) = =

Em geral, para obter a fun¢do inversa de f:

(i) considere y = f(x);
(ii) entao, resolva tal equacdo para x em termos de y;

(iii) por fim, “troque os papéis” de x por y para expressar f !
como funcdo de z.

Esse roteiro funciona em muitos caso, a depender da complexi-
dade da regra que define a func¢ao em estudo.
Note ainda que

FH @) e [fa)]

denotam objetos diferentes:

63



1. Numeros e Funcoes

e f7(x) é a fungdo inversa de f calculada em x;

o [f(x)] " éigual a L

f(x)
Assim, no exemplo anterior temos
1 oz —1
) =2
¢ 1
—1 _
@)™ =

Teorema 1.2. Uma fungio f: X — Y é inversivel se, e somente
se, f for uma bijecdo.

Demonstragio. Se f : X — Y é inversivel, entdo existe uma
fungdo g : Y — X tal que ¢g(f(z)) = =, para todo = € X,
e f(g(y)) = y, para todo y € Y. Suponha, por absurdo,
que f nao seja injetiva. Entado existem z1,z5 € X tais que
z1 # wz e f(z1) = f(x2). Mas, se f(z1) = f(a2), entdo
9(f(z1)) = g(f(x2)), isto é, 1 = x2, uma contradigdo. Assim
f X — Y é injetiva. Sejay € Y. Se z = ¢g(y), entdo
f(x) = f(g(y)) = y. Isso mostra que f : X — Y é sobrejetiva.
Portanto, segue que f é bijetiva.

Por outro lado, como f : X — Y é sobrejetiva, para todo
y €Y, existe z € X tal que f(z) = y. Mais ainda: como f é
injetiva, esse x é inico. Considere entdo a fungdo g : Y — X
definida por ¢g(y) = x, onde x é o tnico elemento de X tal que
f(z) =y. Observe que g(f(z)) = g(y) = =, para todo x € X e
flg(y)) = f(x) =y, paratodo y € Y. Sendo assim, f é inversivel
e sua inversa é f~! = g. |
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Observacao 1.11. Provar que uma funcao é inversivel pode nao
ser uma tarefa facil, seja com a defini¢do, seja com a proposi¢ao
anterior. Na disciplina de Célculo Diferencial e Integral sdo
apresentadas novas ferramentas para determinar se uma funcao
¢ inversivel (localmente).

Em relacdo ao grafico de funcdo inversa f~!, o mesmo
pode ser obtido diretamente do grafico da funcao f conforme o
resultado a seguir.

Teorema 1.3. Dada uma funcéo inversivel f : X ¢ R — R,
temos G(f ™) = {(y. /' () ; y ER} = {(f(2),2) ; v € X}.

Figura 1.43: Grafico da funcao inversa.

Ou seja, G(f~1) é a reflexdo de G(f) em torno da reta y = .
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Para aprofundar os estudos em relacao aos topicos abordados
neste capitulo, recomendamos as referéncias classicas (IEZZI;
MURAKAMI, 2013) e (GUIDORIZZI, 2013).

1.7 Exercicios de Fixacao

1. Sejam z, y € R%. Prove que

(a) x <y a2 t>y L
(b) > 0«=a2"1>0.

2. Mostre que:
b
(a) a<b = a<%<b.
(b) Se ab =0 entdo a =0 ou b =0.
3. Mostre que se a2 +b> =0entdoa=0e b =0.

4. Eliminar o médulo e simplificar a expressao:

(a) |z|

(b) |z +1]

(c) |z —1|+ |z + 2|

(d) |z + ]z =1+ |z — 2]

© y= "tk s

€ y_|1'—1|’x I
x|l
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. Resolva as equacdes modulares abaixo:

(a) [z —4[=2;

(b) |1+ 2z =1 - 2z|;

(¢) 22 —3|=|1+ x|

. Ache todos os valores de x que satisfazem cada uma das
seguintes condigoes:

(a) lr—1]=5 (b) |x+4] =3 (¢) lx+1] =]z — 2|
(@) [+ 5] <4

. Mostre que |a — b| < |a| +|b] , para todos a,b € R.

. Resolva as seguintes inequagoes:

(a) z(x—1) >0 (b) z* < 2?2 (c) 2% +4x >0 (d)
202+ 2 <3

@)zl +1<a®+z  (f) 2z +1)8(xz+1)<0

. Continue resolvendo inequagoes:

(a) Bz+1<ax+4;
(b) 2z — 7> 52+ 2;
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10.

11.

12.

13.

68

S5z

2— = > 1;

(g)‘ 5| > L
1

(h) 1——>0.
|z

Escreva em notacao de intervalo o conjunto solucao das
inequagoes da questao anterior.

Descreva os conjuntos a seguir e represente os mesmos
geometricamente.

(a) [0,2]N1,3]
(b) (—00,2] N0, +00)

1 3 1
@ [-39)o (-3
Faca um esbogo da regiao do plano descritas pelas relacoes
a seguir:
(a)z<2 (b)-1<y<2 (J0<zr<led<y<l1
dy==

Verifique, em cada caso, se a equagdo determina ou néo y
como funcao de x e, em caso afirmativo, ache uma férmula
para a funcao.

1
(a) 322 +y> =1; (b) 32> +y=1; (d%:l:m;
1
(d)fc=y—§; (@ zy*=2-1; (f)2a?+y*-2y=0.
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14.

15.

16.

17.

18.

19.

20.

21.

Se f(z) = 1+ z calcule f(1), f<;>, ﬁ,
fla) + f(b) e f(a®).

Determine o dominio e contradominio da fungao f(x) =
1

x—2

fla+0),

Calcule os ponto de z em que a funcdo g(x) = 23 — 4x é
igual a zero.

Se f(x) = a3 — ma? + 4z — 2, calcule f(1), f(3), f(—1),
fla+b)e f(+), coma#0.

Calcule:

a) f(—1) e f(3) sendo f(z) = —z% + 2z

b) 9(0),9(2) e g(v2) sendo g(z) = %

c) W sendo f(z) =22 eab#0

d) Wsendof(m) =3z+1leab#0

Considere a fungdo f(z) = max {x }

a) Calcule f(2), f(—=1) e f(3).

b) Dé o dominio e esboce o grifico.

Considere a funcéo f(z) = max{n € Z | n < z}. (Func¢io
maior inteiro.)

a) Calcule f (3), (1), f(3) e f(-3).
b) Esboce o grafico.

f(z)— f(p)

a) f(x)=2%2ep=1

Simplifique , com x # p, sendo dados:
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b) f(z) =2®ep=—1
c) f(z) = 22 e p qualquer
d) f(z)=2z+1ep=
e) fle)=2z+1ep=-1
f) f(x)=5ep=2

g) fw) =2’ ep=2

h) f(z) = 2% e p = —2

i) f(z) = 2® e p qualquer
) f@) = ep=1
l)f(a?):%ep—2

m) f(z) =22 -3zep=—2
n)f(x%ep—?)

0) fr) = g ep=-3
p)f(x)=%ep7é0

Q) f(5) = 5 ep£0

22. Simpliﬁque w
) 2z + 1

) 3z —

) —23: + 4
)

)

=R

x
22 4+ 32
) —2?+5

el
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23.

24.

Obtenha o dominio de cada uma das fungdes a seguir:
1
(a) Va2 =4 (b) V(@ =1)(z+2) (¢)

—4
x 23 -4+ +6
O ey 9 @rer1
x+1 1/4 x?
() (m—l) (g)m

Determine o dominio e esboce o grafico.

(a) f(z) =3z (b) g(x) = =2 (c) h(z) = |z]

rsexr <2

(d)g(m)z{ —2sex>2
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25.

26.

27.

28.

29.

72

—2x+3sex<1
(e) flx)=X 1lsel<z<2
2t —3sex > 2

(f) h(x) =22 +1 (g) flx)=Vz +3
)

Considere a fungao f(z) = |z — 1| + |z — 2|.
—2x+3 sex<l1
a) Mostre que f(z) = (1 sel<ax <2

2x — 3 sex > 2
b) Esboce o grifico de f.

Determine f + ¢, fg e ! explicitando os respectivos
g

dominios.

(@) f(x)=zeglx)=a?—1 (b) f(z) =z eg(x)=

sl

Determine as compostas h(z) = f(g(x)) e w(z) = g(f(x)
() f(2) = Vo —Teg(x) =2
(b) f(w) = — e g(z) = 2° — 2

+1 2z +1

(0) () = == e gla) =

~—

z—1
Dada a fungéo f(x) = 1 — 22, calcule f(f(z)).

Uma fungdo diz-se par se f(—z) = f(x) para todo z no
dominio de f e diz-se impar se f(—z) = — f(x) para todo
2 no dominio de f (em cada caso, entende-se que —x estd
no dominio de f quando z estd). Determine se cada uma
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30.

31.

32.

33.

34.

35.

das seguintes fungoes é par, impar ou nenhuma das duas:
(a) f(z) =2?

(b) f(z) = x(x+1)

(c) f(z) = |z|

(d) f(z) =z + p

(e) f(z) = |2*

(f) f(z) = —23 + i/m

(8) F(x) = 5—

Dada uma fungao y = f(z), « € R, defina as fungdes:

g(z) = %[f(ff) + f(—x)] e h(z) = =[f(z) — f(—x)]. Mostre

que g é par e h é impar.

DO =

Mostre que toda fungao f : R — R se escreve como soma
de uma funcao par com uma fungio impar.

Determine o dominio e contradominio da fungao f(x) =

v —3.

2 1
33 +4 . Calcule seu dominio e

Considere a fungéo g(z) =

imagem.

1
22 —

Dada a fungdo h(x) =

contradominio.

T determine o dominio e o

Para a fun¢io f(r) = 2* — 4z + 5, determine o dominio,
contradominio e a imagem.
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36. Determine se a funcdo f(xr) = —2x + 3 é crescente ou

decrescente.

37. Para a funcio g(z) = 2® — 322, determine os intervalos em

que ela é crescente e decrescente.

1
38. Verifique se a fungao h(x) = — é crescente ou decrescente
x

no intervalo x > 0.

39. Considere a fungdo f(x) = z* — 42® + 622 — 42 + 1.

Determine se ela é crescente ou decrescente.

40. Encontre o valor méximo e minimo da funcdo f(x) =

41. Calcule a funcao inversa de f(x) =

2% — 422 + 2 no intervalo [—2, 2].

_2z-5
3

42. Encontre a funcdo inversa de f(x) =2z — 5.

1
43. Dada a fungdo g(z) = ——
x

gt determine sua inversa.

44. Se um tridngulo equilatero tem lado z, exprima sua area

como funcéo de z.

45. Seja d a distancia de (0,0) a (z,y). Expresse d em funcao

1
de z, sabendo que (z,y) é um ponto do grafico de y = —.
x

46. Os lados iguais de um triangulo isésceles tem medida 2. Se
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47.

48.

49.

50.

O perimetro de um tridngulo retangulo é 6 e a hipotenusa
é x. Exprima a area como funcdo de x.

Um retangulo, cuja base tem comprimento x, esta inscrito
num circulo de raio a. Exprima a area do retdngulo como
funcao de z.

Um fio de comprimento L é cortado em dois pedacos, e estes
tomam a forma de uma circunferéncia e de um quadrado.
Se z é o lado do quadrado, exprima a area total englobada
pelas duas figuras como funcao de x.

As leis da Fisica, muitas vezes, descrevem relagoes de
proporcionalidade direta ou inversa entre grandezas. Para
cada uma das leis abaixo, escreva a expressao matematica
correspondente.

a) (Lei da Gravitagdo Universal). Matéria atrai matéria
na razao direta das massas e na razao inversa do
quadrado das distancias.

b) (Gases Perfeitos). A pressdo exercida por uma deter-
minada massa de um gas é diretamente proporcional
a temperatura absoluta e inversamente proporcional
ao volume ocupado pelo gés.

¢) (Resisténcia Elétrica). A resisténcia de um fio condu-
tor é diretamente proporcional ao seu comprimento e
inversamente proporcional a drea de sua segao reta.

d) (Dilatagdo Térmica). A dilatacdo térmica sofrida por
uma barra é diretamente proporcional ao compri-
mento da barra e a variagao de temperatura.
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52.

53.
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As emissoes de chumbo sdo uma das principais causas da
poluicao do ar nos Estados Unidos. Usando dados colhidos
pela U. S. Environmental Protection Agency na década de
1990, é possivel mostrar que a expressao

N(t) = —35t + 299t + 3347

fornece aproximadamente a emissao total N de chumbo
(em milhares de toneladas) ocorrida nos Estados Unidos ¢
anos apés o ano base de 1990.

a) De acordo com esta expressdo, qual deveria ter sido o
emissao de chumbo em 19957
b) De acordo com esta expressio, em que ano da década

de 1990 e 2000 a polui¢ao de chumbo foi maior?

Um estudo de eficiéncia no turno da manha em uma certa
fabrica mostra que, em média, um operario que chega no
trabalho as 8 h tera montado

f(z) = —a3 4 622 + 152
aparelhos de televisao x horas depois.

a) Quantos aparelhos um operdrio ja montou, em média,
as 10 h da manha?

b) Quantos aparelhos um operdrio monta, em média,
entre 9 h e 10 h da manha?

Durante um programa nacional de vacinagdo da populacao
contra um certo tipo de gripe, as autoridades descobrem
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que o custo para vacinar z% da populacao é dado
aproximadamente por

150z

@)= 5002

milhoes de reais.

(a) Qual é o dominio da fung¢do custo acima?

(b) Para que valores de z a fun¢do C(x) tem significado
neste contxto?

(¢) Qual o custo para vacinar os 50% da populagao?

(d) Que porcentagem da populagido terd sido vacinada
apds serem gastos 37,5 milhoes de reais no programa?

54. Durante periodos umidos, uma fina camada de &4gua
estd presente na superficie de folhas e outros detritos
depositados no solo. Esta pelicula é o habitat de numerosas
bactérias, protozoarios, fungos, esporos e outros organismos
microscopicos. Pode-se visualizar tais organismos se os
detritos imidos forem imersos em dgua contida num prato
de vidro e a extremidade de uma lamina fina de vidro for
mergulhada nesse prato. Se a lamina formar um angulo
a com a superficie horizontal do prato e da sua outra
extremidade deixar-se escoar agua limpida, observa-se que
0s microorganismos movem-se ao longo da lamina, em
direcdo contraria & do fluxo da dgua (Bandoni e Koske,
1974).

(a) Faga um esbogo geométrico do problema.
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(b) Se a distancia percorrida pelos microorganismos ao
longo da lamina é d, calcular a altura vertical A que
é atingida pelos microorganismos.

Uma barra vertical de 2m de comprimento produz uma
sombra em um plano horizontal. Os raios da luz solar tem
uma inclinacdo 8 = 67° em relagdo ao plano horizontal.

(a) Faca um esbogo geométrico do problema.
(b) Qual o comprimento da sombra?

(¢) Qual seria o comprimento da sombra se a barra fosse
horizontal, e o plano vertical de frente para o sol?

A velocidade do sangue a r cintimetros do eixo central de
uma artéria é dado pela fungdo S(r) = C(R? — r?), onde
C é uma constante e R é o raio da artéria. Qual o dominio
desta fungao? Esboce o grafico de S(r).

O volume V, em cm?, de um vaso sanguineo cilindrico
é uma fungado do raio r, em ¢m. Tal fungdo é dada por
V =V(r) = 8mr3. O que acontece com o volume se o raio
é reduzido pela metade devido ao acimulo de gordura nos
vasos?

A forma de um tumor canceroso é aproximadamente
esférica e, portanto, seu volume é dado, aproximadamente,
por

4
V= 5777‘3,
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onde 7 é o raio do tumor em cm. Quando foi descoberto, o
tumor tinha 0,73cm de raio; 45 dias depois, o raio aumentou
para 0,95cm. Qual foi o aumento de volume do tumor nesse
periodo?
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CAPITULO 2

Funcoes Polinomiais

As fungées polinomiais ocupam um papel central na modelagem
de fendmenos naturais, sociais e tecnolégicos. Sua estrutura algé-
brica simples, composta por somas e poténcias de uma variavel
com coeficientes constantes, torna tais fungoes especialmente
adequadas para representar comportamentos regulares e suaves,
como trajetorias, velocidades, crescimentos, oscilagoes e muitas
outras relacdes observadas em contextos cientificos.

Exemplo 2.0.1.

(a) Fisica: o movimento de um corpo sob aceleracao constante,
como a queda livre, é descrito por uma func¢ao polinomial
de segundo grau:

2

at
s(t) = so + vot + -
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()

onde s(t) representa a posi¢ao ao longo do tempo.

Quimica: fungdes polinomiais podem modelar taxas de
reacao aproximadas ou ajustes experimentais de curvas de
absorcao em espectrofotometria.

Biologia: curvas de crescimento populacional podem ser
inicialmente ajustadas por funcées polinomiais de grau 2
ou 3 antes de adotar modelos logisticos mais realistas.

Engenharia: em andlise estrutural, fungdes polinomiais de
grau 3 ou 4 sdo usados para descrever a deformacdo de
vigas sob carga distribuida.

Economia e Ciéncias Sociais: ajustes de regressao polino-
mial sdo frequentemente usados para representar tendéncias
e fazer previsdes com base em dados experimentais.

Além de sua utilidade prética, as fungoes polinomiais também
fornecem um ponto de entrada fundamental para o estudo do
Célculo Diferencial e Integral, sendo utilizadas na aproximacao
de fungbes mais complexas (por exemplo, por meio de séries
de Taylor) e na solucao de equagoes diferenciais. No que segue
estuda-se suas principais caracteristicas e propriedades.

Definicao 2.1. Diz-se que f : R — R é uma fungdo polinomial
quando existem nimeros reais a,, - -- , a1, ag tais que, para todo
r € R, tem-se

f@)=ana™ + -+ a1z + ao.

Se a,, # 0 diz-se que f tem grau n (Notagdo: gr.f(xz) =n).
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Exemplo 2.0.2. Sao fungoes polinomiais:

« f(z) =5 (constante ou gr.f(z) = 0),
e f(z) = = (identidade, gr.f(z) = 1),

e f(z) =3z +2 (afim, gr.f(z) = 1),

e f(z) = 2%+ 2z — 1 (quadrética ou gr.f(z) = 2),
e f(z) =2 +422+3 (gr.f(z) = 3),

o f(2) =32° +4a* + 7a® + g + g (gr.f(x) =5).

1
Exemplo 2.0.3. As fungoes dadas por f(x) = /z e g(x) = -

nao sao polinomiais.

A soma e o produto de funcoes polinomiais sdo ainda funcoes
polinomiais. Nesse caso, vale em geral que:

gr.(f(z) + g(z)) = max {gr.f(z), gr.g(z)}

gr-(f(x) - g(x)) = gr.f(z) + gr.g(z).

Um exemplo interessante de produto (ou decomposigao
polinomial) é

" —a"=(z—a)z" P +azr" P+ -+ a" P+ o).
Diz-se que f(z) = 2" — o™ é divisivel por g(z) =z — a.
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Como consequéncia direta do produto anterior, podemos
escrever para uma fungdo polinomial f de grau n:

f(@) = fla) = an(a™ —a") + ap_1(a" =" 1) -t ai(z - @)

= (z - a)Q(z),

para alguma funcdo polinomial @ de grau n — 1. Ou seja,

f(@) = (z = a)Q(z) + f(a),

para todo z, « € R. Portanto, a é um(a) zero (raiz) de f, isto
é, f(a) =0, se, e somente se, f(x) é divisivel por = — a.

Observacao 2.1. O ntimero de zeros de uma fungéo polinomial
f é finito e limitado pelo grau de f.

Para uma func¢do polinomial de grau n, a paridade de n
tem forte influéncia sobre o gréafico, como apontam os exemplos
abaixo.

Figura 2.1: Grafico de fungoes polinomiais.

Y= y=3z2 -1
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y=a3—2r+1 y=a*—-322+1

Em geral, dada f(z) = apz™ + -+ + a1z + ap uma funcéo
polinomial de grau n, as informacoes sdo de grande utilidade

1. Se n é par entdo, para |z| suficientemente grande, f(x)
tem o mesmo sinal de a,,. Este sinal é, portanto, o mesmo,
nao importando se z < 0 ou « > 0, desde que |z| seja
suficientemente grande.

2. Se, entretanto, n é impar, f(x) tem o mesmo sinal de a,,
7 ) )
para valores positivos muito grandes de x e tem o sinal
oposto de a,, para valores negativos muito grandes de =x.

3. Considere uma func¢do continua f : R — R. Se existem
a, B € R tais que f(a) > 0e f(B) <0, entdo deve existir
um(a) zero (raiz) de f entre « e 3.

Observacao 2.2. Este tltimo resultado é de grande relevancia,
pois serve de base para diversos métodos numéricos de apro-
ximagao de raizes, tanto em procedimentos iterativos manuais
quanto em algoritmos computacionais. Para uma apresentacao
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2. Funcgbes Polinomiais

detalhada e aprofundada desses métodos, recomenda-se consultar
a referéncia (RUGGIERO; LOPES] [1998|).

A seguir estuda-se alguns casos particulares de funcoes
polinomiais de grande interesse para aplicacoes.

2.1 Funcao Afim

Definicao 2.2. Uma funcao f : R — R é dita uma funcio afim
quando existem constantes a, b € R tais que f(x) = ax + b, para
todo z € R.

Ou seja, quando f for uma funcdo polinomial de grau 1 ou 0.

Exemplo 2.1.1. A fungdo identidade f(z) = = é uma funcao
afim. Nesse caso tem-se a = 1 e b = 0. Também sao afins as
translacoes f(z) =« +b.

Exemplo 2.1.2. Outros casos particulares de fungoes afins séo
as funcoes lineares f(z) = ax (a # 0 e b = 0) e as fungodes
constantes f(x) =b (a=0e b #0).

Exemplo 2.1.3. Um exemplo classico de aplicacio das func¢oes
afim é a determinagdo do prego a pagar por uma corrida de
téxi. Para tanto, considere x a distdncia percorrida (usualmente
medida em km), o valor inicial b (bandeirada) e o coeficiente a é
o preco de cada km rodado (taxa). Assim, tem-se que o prego a
ser pago pela corrida serd f(x) = ax + b.

Exemplo 2.1.4. Em Fisica, a equacdo hordria do movimento
unidimensional com velocidade constante (movimento retilineo
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2.1. Fungéo Afim

uniforme), que descreve a posigao de um objeto em funcao do
tempo, é uma fungao afim. Se um objeto se move com velocidade
v, sua posicdo em relacdo ao tempo serd s(t) = sg + vt.

E possivel, mediante critérios como os que apresentaremos
mais adiante, saber que uma funcdo f : R — R é afim sem
que os coeficientes a e b sejam fornecidos explicitamente. Antes,
vejamos o grafico de uma funcao afim.

Considerando a funcao f : R — R dada por f(x) = ax+b, P,
P, e P; pontos quaisquer do grafico de f e a nogao de distancia
no plano, é facil ver que tais pontos verificam

d(Py, P3) = d(Py, Py) + d(Ps, P3),

isto é, supondo d(Py, Ps) o maior dos trés niimeros, tem-se que
Py, P, e P3 sd0 colineares. Isso mostra diretamente que o grafico
de f é uma reta.

Figura 2.2: Gréfico da fungao afim y = ax + b.

Y

/
/
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2. Funcgbes Polinomiais

Como consequéncia;:

(i) Para que uma funcao afim f fique inteiramente determi-
nada basta conhecer os valores f(z1) e f(x2) com x1 # xo.
Isto porque o grafico de f é uma linha reta e, como sabe-
mos, uma reta fica inteiramente determinada quando se
conhecem dois de seus pontos.

(ii) Do ponto de vista geométrico, b é a ordenada do ponto onde
a reta, que é o grafico da fungdo f(z) = ax +b, intersecta o
eixo OY . O ntmero a chama-se a inclinagdo, ou coeficiente
angular, dessa reta (em relagdo ao eixo horizontal OX).

(iii) Quanto maior o valor de a, mais a reta se afasta da posicao
horizontal.

Dada uma fungdao afim f(x) = ax + b, o coeficiente a é
denominado coeficiente angular ou declividade da reta
representada no plano cartesiano. Além disso, dados x1 # xo
vale

f(@1) — fla2)

q=—".
Tl — T2

O coeficiente b é denominado coeficiente linear. Além disso,

b= £(0).

Exemplo 2.1.5. Para a fungdo afim f(x) = 2z + 3, temos
a=2>0eb =3 Assim, a reta tem inclinacdo positiva
(Angulo entre a reta e o eixo-z menor do que 7/2), e corta o
eixo-y no ponto y = 3.
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2.1. Fungéo Afim

Figura 2.3: Grafico da funcao afim y = 2x + 3.

)
10

4/ 2 4

Exemplo 2.1.6. Por sua vez, para f(z) = —z+5, valea = -1 <
0 e b=15. Ou seja, a reta tem inclinagao negativa (dngulo entre
a reta e o eixo-x maior do que 7/2 e menor do que ), e corta o
eixo-y no ponto y = 5.

Figura 2.4: Grafico da fun¢do afim y = —z + 5.

Y
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Note que para f(z) = ax + b, com a # 0,

b

f(LU()) =0& 29 = —E,
. . , b
ou seja, o zero da fungao afim é dado por zg = ——.
a

Teorema 2.1. Seja f : R — R uma funcdo afim, i.e., f(z) =
ax + b, para todo z € R, com a # 0.

e a > 0 se, e somente se, f é monétona crescente.
e a < 0 se, e somente se, f é mondtona decrescente.

Tal resultado segue diretamente da expressao

_ f(ffl) *f(Iz) '

Ty — T2

Em particular, se a # 0 temos que toda fung¢do afim é injetiva.
Além disso, para f : R — R uma funcdo afim, vale ainda
fR) = R, i. e, se a # 0 toda fun¢do afim é sobrejetiva.
Portanto, é também bijecdo e, consequentemente, possui uma
fungao inversa. De fato,

T —0b 1 b

f =) = =—-xz——, zeR.
a a a

Note que f~! também é uma funcio afim!

Dada uma fun¢do f : X C R — R é de grande interesse
identificar os valores x € X tais que f(z) > 0, f(z) = 0 (zeros
de f) ou f(x) < 0. Resolver este problema significa estudar o
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sinal da funcgao f.

Figura 2.5: Estudo do sinal de uma funcao f.

Y

b
Para a funcao afim f(x) = ax + b, j& vimos que z = —— é o

a
seu unico zero, a # 0. Se a > 0 é imediato que f serd monétona

b
crescente e dessa forma para valores x > —— ocorre ax + b > 0.
a

b
Ja para © < —— ocorre ax + b < 0. Resultado andlogo ocorre

a
para o caso a < 0, onde nesse caso f serd monotona decrescente.
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Figura 2.6: Estudo do sinal da fun¢ao afim.

a>0 a<0

y y

Exemplo 2.1.7. Counsidere a fungao dada por f(z) = 2z + 1,

x € R. Temos que f(z) = 0 se, e somente se, © = —3 Desde
que a = 2 > 0, temos

f(x)>0<:>x>—%

1
flz)<0&s < —3
pois f é crescente.

Exemplo 2.1.8. Considere a fungdo dada por f(x) = —2x + 3,

3
x € R. Temos que f(z) =0 se, e somente se, = 3 Desde que
a=—2 <0, temos

f(m)<0(:>x>g
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2.2. Fungéo Linear

3
f(ac)>0<:>:r<§7

pois f é decrescente.

2.2 Funcao Linear

A funcdo linear, dada pela férmula f(x) = az, é o modelo
matematico para os problemas de proporcionalidade.

Definicao 2.3. Diremos que uma fung¢dao f : R — R é uma
proporcionalidade direta se, para quaisquer niimeros reais c e x,
tem-se

flex) = cf(x).

Se

flex) = f(fﬂ)7

C

para quaisquer ¢ # 0 e z #* 0, diremos que f é uma
proporcionalidade inversa.

Ou seja, duas grandezas sdo diretamente proporcionais
quando ao multiplicar uma delas por um niimero real arbitrario
¢, a outra também fica multiplicada por este nimero.

Ty =cTr—cy.

Da mesma forma, duas grandezas sao inversamente proporcionais
quando ao multiplicar uma delas por um niimero real arbitrario
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1
¢ # 0, a outra fica multiplicada por — (isto é, dividida por c).
c

x»—>y:>c:v»—>y.
c

Note que ao se falar em proporcionalidade entre duas
grandezas x e ¥y, é necessario que exista uma relagao funcional
entre tais grandezas! Além disso, com base na defini¢ao acima,
fazendo x =1 e a:= f(1) vale

fley=c- f(1) = ac, V ¢ € R (proporc. direta)
ou
fle)=—~2~ = %, V ¢ € R* (proporc. inversa).

. a
Ou seja, f(z) = ax ou f(z) = —.
. ~ x . . .
Fixaremos nossa atenc¢ao na proporcionalidade direta, cha-
mada apenas de “proporcionalidade”. Tal conceito é essencial
para entender a conhecida “Regra de Trés”. Quando a corres-
A . / / 7’ . . .
pondéncia x — y, x — y ¢é uma proporcionalidade, a igualdade
’7

y _ Yy . . ,
< = = permite que se determine um desses quatro nimeros

’

x
quando se conhecem os outros trés.

x —

y ’
>< == $~y/:x/-y<:>y—,:g.
, , x T
r — Yy

Nesse contexto a grande questao é como ter certeza de que
a correspondéncia x — y é uma proporcionalidade. Para tanto,
considere as situagoes do exemplo a seguir.
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Exemplo 2.2.1.

1. Situagao 1: Uma quantia de R$ 10.000,00 aplicada na
poupanca por um certo periodo rendeu R$ 820,00. Qual
serd o rendimento se a quantia aplicada for R$ 15.000,007

2. Situacgao 2: Uma quantia aplicada na poupanga por 3
meses rendeu R$ 150,00. Qual serd o rendimento se o
periodo de aplicagao for de 5 meses? (considere a taxa de
juros constante)

3. Situagao 3: Uma bola em queda livre percorre 125 m em
5 segundos. Quanto ela percorre em 10 segundos?

4. Situacado 4: Uma empresa asfaltou uma estrada de 36 km
em 14 dias. Em quantos dias ela asfalta uma estrada de
54km?

Em todas as situagdes acima, temos uma relagdo funcional
crescente. Mas isso ndo ¢é suficiente para assegurar que temos
uma proporcionalidade envolvida. Para a primeira situacao
acima, note que mantido o mesmo periodo, se duplicar, triplicar
ou, em geral, multiplicar por qualquer n € N o valor inicial, o
rendimento serd também multiplicado pelo mesmo n. O mesmo
ocorre na quarta situacido. Assim, essas duas estabelecem uma,
proporcionalidade, e desse modo podemos usar a Regra de Trés
para resolver o problema. Nas situacoes 2 e 3 isso nao é possivel,
pois a relagdo envolvida nao é de proporcionalidade. De fato, na
situagdo 2, compare o rendimento em 3 e 6 meses. No segundo
periodo de 3 meses (meses 4, 5 e 6) o rendimento serd em
funcdo do valor original somado com 150 de rendimento dos
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primeiros 3 meses. Assim, nao serd o dobro. Para a situacao 3,
compare o deslocamento em 5 e 10 segundos. No primeiro periodo
a bola parte do repouso e no segundo periodo a bola “parte”
com a velocidade adquirida do movimento anterior. Assim, o
deslocamento também nao serd o dobro.

O raciocinio acima é baseado no seguinte resultado:

Teorema 2.2 (Teorema Fundamental da Proporcionalidade).
Sejam x e y grandezas positivas relacionadas por uma funcao f
(isto é, y = f(x)). Suponha que:

1. f é crescente ou decrescente;
2. f(nx) =nf(z), para todo n € N.

Entdo, x e y sdo (diretamente) proporcionais.

Ou mais formalmente, considere R, o conjunto dos niimeros
reais positivos.

Teorema 2.3.Seja f : Ry — Ry (f : R — R) uma
funcao crescente ou decrescente. As seguintes afirmacoes sao
equivalentes:

1. f(nx) = nf(x), para todon € N (n € Z) e todo x € Ry
(z € R);

2. Pondo a = f(1), tem-se f(x) = az, para todo x € Ry
(x € R);

3. f(z+y) = f(x)+f(y), para quaisquer z,y € Ry (z,y € R).

96



2.2. Fungéo Linear

Os teoremas acima sdo a chave para determinar, em todas as
situagoes, se estamos ou nao lidando com uma proporcionalidade.
Ou seja, se uma dada func¢do é ou néo linear. Se queremos saber
se f: Ry — Ry é uma fungao linear basta verificar duas coisas.

(i) Primeira: f deve ser crescente ou decrescente. (Estamos
deixando de lado o caso trivial de f ser identicamente nula.)

(ii) Segunda: f(nx) =nf(x) para todo x € Ry e todon € N.
No caso de f: R — R, basta verificar esta tltima condi¢ao
paran € Zex € R.

Uma consequéncia direta da caracterizacdo acima para
funcoes lineares, é a caracterizacao das funcoes afim.

Teorema 2.4. Seja f : R — R uma fungdo mondétona e injetiva.
Se o valor do acréscimo

f@+h) = f(z) = p(h)
depender apenas de h, entdo f é uma fungao afim.

Demonstraciao. A demonstracdo deste teorema é uma aplicagao
do Teorema Fundamental da Proporcionalidade. Note que,
supondo f crescente, temos ¢ também crescente. Além disso,

eh+k)= flx+h+Ek)— f(z)
= f@+k)+h) = flz+k)+ fle+k) - f(z)
= @(h) + (k).
Logo, ¢(h) = ah, com a = ¢(1). Pondo b = f(0), temos
F(h) = ah +b. n
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Dito de outra forma, o teorema acima assegura que aumentos
iguais dados a x correspondem aumentos iguais de y = f(z). Ou
seja, a fun¢do afim possui uma taxa de variagdo constante:

fa+h) — fx)
h

Observacao 2.3. A reciproca do Teorema acima também é
verdadeira.

2.3 Funcao Quadratica

Definicao 2.4. Uma fun¢ao f : R — R chama-se quadratica
quando existem a,b,c € R, com a # 0, tais que

f(z) = ax® + bx +c,

para todo x € R. Ou seja, quando f é uma func¢do polinomial
de grau 2.

Inicialmente, note que as constantes a,b,c € R acima sao
univocamente determinados. Ou seja, se ax? + bxr + ¢ =
a'z? + 'z + ¢, para todo z € R, entdioa =a’, b=V ec= .
De fato, para x = 0 segue que ¢ = ¢’. Logo, considerando z # 0
e usando a Lei do cancelamento obtemos ax +b = d’z + V.
Fixando-se x = 1 e depois x = —1, temos a = a’ e b= V.

Observacao 2.4. O resultado acima permite estabelecer uma
correspondéncia bijetiva entre as fungoes quadraticas e os
trindmios do segundo grau (polindémios de grau 2).

flx)=az’+ bz +c— aX?’+bX +c~ (a,b,c)
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2.3. Fungdo Quadratica

O estudo das fungoes quadraticas tem sua origem na resolugao
da equagao do segundo grau.

Exemplo 2.3.1. Em textos cuneiformes (Babilonia, had quase
quatro mil anos), encontramos, por exemplo, a questdo de achar
dois niimeros, dados sua soma s e seu produto p. Em termos
geométricos, este problema pede que se determinem os lados de
um retangulo conhecendo o semi-perimetro s e a area p.

{ rT+Yy=s:s
r-y=p

Ou seja,
y=s—az=z-(s—2)=p=>a°—sx+p=0.

Note que y = s — x também é uma solucao da equagao acima.

Exemplo 2.3.2. A funcio quadratica também surge em Fisica
nos problemas relacionados ao movimento unidimensional com
aceleragdo constante (movimento uniformemente variado). Sendo
a aceleracdo é constante, a(t) = a para todo t > 0, podemos
at?
deduzir a equacio hordria do espaco: s(t) = sg + vot + ——, com

so € vg sendo, respectivamente, a posi¢ao e a velocidade inicial.

Uma caracterizacdo importante das fungdes quadraticas é
a sua conhecida forma candnica. Para tanto, considere o
trinémio

b
axQ—l—bx—!—c:a[xQ—l—x—i—c}.
a a
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b\ 2
Comparando com (m + 2) e “completando quadrado”, temos
a

[ b
ar’+br+c=a x2+x—|—]

Ou seja,

ar’+br+c=a

+i 2_|_4ac—b2
T % 4a? '

Esta maneira de escrever o trinémio do segundo grau é
chamada de forma candnica e tem algumas consequéncias para
a funcao quadrética. Por exemplo:

e Identificacdo dos zeros;

 Valores méximo/minimo globais;

e Nao injetividade da funcao quadratica;

e O gréfico é uma parabola;

Estudo do sinal.
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2.3. Fungdo Quadratica

De fato, para calcular os zeros de uma fungdo quadratica
f(z) = ax? + bx + ¢ temos que resolver a equacio f(z) = 0.
Considerando a forma candnica acima,

b)2+4ac—b2 _0

2
b =0& —
ar® +ox +c (J;—i— 12

A passagem da linha (2) para a linha (3) sé tem sentido quando
o discriminante, A := b? — 4ac, é ndo-negativo. O caso A < 0
a equacao dada néo possui solugdo real. Assim, considerando
A = b% — 4ac e a equacio

az? + bz 4+ c =0,

tem-se:

—b+ VA -b—VA
———ery=—F——;
2a 2a

b .
2a’

1. A>0= a2 =

2. A:O:>IL'1:£C2:*
3. A < 0 = N3ao existem raizes reais.
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2. Funcgbes Polinomiais

Para determinar os extremos globais, tem-se o seguinte
resultado.

Teorema 2.5.
(i) Sea < 0, a fungdo quadrética dada por f(x) = az?+bx+c
A b

admite valor maximo yy; = —— para xy = ——;
4a 2a

(ii) Se a > 0, a funcio quadratica dada por f(z) = ax®+bx+c
A b
admite valor minimo y,, = —— para x,, = ——.
4a 2a
Para a construgao do grafico da funcao quadrética f(z) =
ax? + bx + ¢, deve-se observar:

(a) O gréfico é uma parabola, cujo eixo de simetria é a reta

T = 50 perpendicular ao eixo-x
a

(b) Analisar a concavidade: a > 0 ou a < 0;

(c¢) Analisar os zeros (interse¢do ou nao com o eixo-z): A > 0,
A =0o0uAl <0

(d) Vértice da pardbola (maximo/ minimo).

Por sua vez, para o estudo do sinal da fungdo quadratica

considere a sua forma canodnica
b ? LA
T+ — — .
2a 4a?

Devemos analisar o sinal de a # 0 e do discriminante A.

flx)=azx®> +bx+c=a
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2.3. Fungdo Quadratica

e« CASO 1: A <0 =. Nesse caso, ¢ suficiente analisar o

sinal do produto
T+ i : + i
2a 4a?

Para A < 0, temos a - f(x) > 0. Ou seja, o sinal de f(x)
serd o mesmo sinal de a para todo =z € R.

a- f(x)=a*-

Figura 2.7: Estudo do sinal para o caso A < 0.

flz) <0

Exemplo 2.3.3. Para f(z) = 2% + 1 temos A = —4 < 0. Assim,
como a = 1> 0, vale 22 + 1 > 0 para todo = € R.

Exemplo 2.3.4. Considere f(z) = —2? + z — 1. Entdo, A =
—3 < 0. Como a = —1, segue que —z2 + 2 — 1 < 0 para todo
z e R.
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2. Funcgbes Polinomiais

e CASO 2: A =0. Dessa forma, f(x) tem o mesmo sinal

de a para todo x € R\ {z1}, sendo =1 = ~5a raiz com
a

multiplicidade 2 de f(z), pois

b\ 2
a-f(a:)zaQ-(a:+2(l) > 0.

Figura 2.8: Estudo do sinal para o caso A = 0.

flx) <0

Tr1 = T2

Exemplo 2.3.5. Seja f(z) = 22 + 2z + 1. Entdo, A = 0. Como
a =1 > 0, segue que f(xz) > 0 para todo z € R. Mais
precisamente,

, sex=—1.

{ f(z) >8, sex € R\ {-1}
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2.3. Fungdo Quadratica

e CASO 3: A > 0. Nesse caso, é necessario analisar o sinal
do produto a- f(z) = a?®-(x —z1)(z —x2), considerando por
simplicidade 1 < x9. Assim, o sinal das diferengas =z — x;,
i = 1,2, e consequentemente de a - f(x), é determinado
conforme r < 1 < T ouxy < x < Ty ou 1 < Ty < .
Segue que

a-f(x) >0, sex <z ouzx>xg,
a-f(x) <0, sex <x<uxo.

Ou seja, o sinal de f(x) seréd o sinal de a para todo z, se
r < T1 ouzx > Ta, e serd o sinal de —a para todo x, se
1 <xT <2

Figura 2.9: Estudo do sinal para o caso A > 0.
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2. Funcgbes Polinomiais

Exemplo 2.3.6. Se f(z) = 22 —x — 6, entdo a = 1 > 0,
A=25>0 2, =-2exy; =3 Seguequez?—x—6 >0
sex<—2ouz>3 ex?—xr—6<0se—-2<z<3.

Com base no estudo acima é possivel resolver diversas
inequagoes/desigualdades envolvendo fungdes quadraticas.

2.4 Exercicios de Fixacao

1. Estima-se que, t meses a partir de agora, a populagao de
uma certa comunidade serd de P(t) = 20t + 8000.

a) Qual a taxa média que a populagdo estard variando em
relagdo ao tempo, 15 meses a partir de agora?

b) Por quanto a populacgdo variard realmente durante o
162 més?

2. Construa o grafico das fungoes lineares abaixo:
x
5 (c) y

(@) y = -3z +1 (b) y =
y:

@y =73

3. Uma fungédo linear @ = Q(t) assume o valor 1 = 88,3
mg, no instante em que t; = 14 s e o valor Q3 = 89,6 mg,
quando to = 39 s. Determinar a funcao linear.

4. Se uma mola helicoidal for distendida sob a influencia
de uma forga, seu comprimento serd uma funcao linear
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da forca, a menos que a forca exceda um certo limite
(lei de Hooke). Seja F' a forca (medida em Newtons), e
[ o comprimento da mola (em cm). Se Iy representa o
comprimento inicial quando nenhuma forca esta atuando
na mola e a a taxa de aumento do comprimento da mola,
exprimir [ em funcao de F.

. O lixo sdlido gerado a cada ano nas cidades dos EUA estd
crescendo. O lixo s6lido gerado, em milhoes de toneladas,
foi de 88,1 em 1960, e de 234 em 2000. A tendéncia

mostra-se linear durante este tempo.

a) Construa uma férmula para a quantidade de lixo
solido gerado nos EUA.

b) Use estd férmula para prever a quantidade de lixo sélido
gerado nos EUA, em milhoes de toneladas, no ano de 2020.

. Desde o inicio do més, o reservatério de agua de uma
cidade vem perdendo agua a uma taxa média constante.
No dia 12, o reservatério esta com 200 milhoes de litros
d’agua e no dia 21, estd com 164 milhoes de litros d’agua.

(a) Expresse a quantidade de dgua no reservatério em
fun¢do do tempo e desenhe o gréafico associado.
(b) Quanta dgua havia no reservatério no dia 87

. Sejam A, B, C constantes com A # 0 e B # 0. Considere
a equacao
Az + By =C.
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Isolando y na equagdo acima mostre que y = f(x) é uma
funcdo linear. Determine a inclinagao e as intersegoes de f
com os eixos coordenados.

. E sabido que 100g de soja seca contém 35g de proteinas e

que 100g de lentilha seca contem 26g de proteina. Homens
de estatura média, vivendo em clima moderado, necessitam
de 70g de proteinas na sua alimentacao diaria. Suponhamos
que um homem queira adquirir estas 70g de proteinas
alimentando-se de soja e/ou lentilhas. Seja x a quantidade
diaria de soja e y a quantidade didria de lentilhas (z e y
medidos em unidades de 100g). Qual a relagao entre z e
y?

9. A pressao exercida pela dgua é proporcional a profundidade

onde é medida. Seja d a profundidade (em metros) e p a
pressdo (em atm). Foram feitas as seguintes medidas na
agua do mar: d = 98,0 m, p = 10,21 atm. Expressar p em
termos de d.

10. Escreva na forma candnica os seguintes trinémios:
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a) ¥? — 3z +2
b) 2?2 — 2z —2
c) 2 —2x+1
d) 22 —6x+9
e) 2r2 — 3x

f) 322 + 2 —2
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11.
12.
13.

14.

15.

16.

17.

Determine as rafzes da fungao polinomial f(z) = 22 —5x+6.
Construa o grafico da funcio g(x) = 23 — 4z + 2.

Para a fungdo h(z) = —z? + 4z — 3, encontre os pontos de
maximo e minimo.

Encontre as raizes e desenhe o grafico da fungdo f(x) =
2
z“ —9.

Para cada uma das fungoes quadraticas abaixo, escreva-
a na forma canoénica. A seguir, calcule suas raizes (se
existirem), o eixo de simetria de seu grafico e seu valor
minimo ou maximo.

a) f(z) =22 —8x+23
b) f(z) =8z — 222

¢) f(z) =222 -6z +1
d) f(z) =22 —22-3

Estude a funcdo quadratica f(x) = 322 + 5z + 2 quanto
ao sinal. Ou seja, determine os valores de x para os quais

f(2) =0, f(z) >0e f(z) <0
Resolva as inequacoes.

a) 22 —3x+2<0
b) 22 =52 +6 >0
c)x
d)
e)x
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18.

19.

20.
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f) 322 +2-2>0
g)a? —4r+4>0
h) 322 — 2 <0

) 422 —dz+1<0
j)4z? —4x+1<0

Com 80 metros de cerca um fazendeiro deseja circundar
uma area retangular junto a um rio para confinar alguns
animais. Quais devem ser as medidas do retdngulo para
que a area cercada seja a maior possivel?

As emissbes de chumbo sdo uma das principais causas da
poluicao do ar nos Estados Unidos. Usando dados colhidos
pela U. S. Environmental Protection Agency na década de
1990, é possivel mostrar que a expressao

N(t) = =35t + 299t + 3347

fornece aproximadamente a emissao total N de chumbo
(em milhares de toneladas) ocorrida nos Estados Unidos ¢
anos apés o ano base de 1990.

(a) De acordo com esta expressao, qual deveria ter sido o
emissdo de chumbo em 19957

(b) De acordo com esta expressdo, em que ano da década
de 1990 e 2000 a polui¢do de chumbo foi maior?

A concentracdo de bactérias num sistema de agua publico
tem aumentado, o que ocasionou um tratamento com
agentes anti-bacterianos. Bioquimicos responsaveis pelo
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21.

22.

tratamento da 4dgua estimam que o nimero de bactérias
por cm?® pode ser descrito pela funcio

N(t) = 40t* — 320t + 1000,

onde t é o tempo em dias de tratamento. A agua é consi-
derada imprépria para o consumo quando a concentragao
de bactérias excede 720 bactérias por cm?. Quanto tempo
apods o inicio do tratamento a dgua podera ser bebida no-
vamente?

Em uma determinada cidade, decide-se construir um
parque isolando-se uma area na margem de um rio. Sao
distribuidos recursos para construir 80 metros de cerca.
A area fechada serd um retangulo, mas apenas trés lados
serdao fechados com cerca - o outro lado serd limitado pelo
rio.

(a) Esboce a area cercada.

(b) Qual a drea maxima que pode ser fechada desta
forma?

Quando fatores ambientais impoem um limite superior
ao numero de individuos, uma populacdo cresce a uma
taxa que é conjuntamente proporcional ao ntmero de
individuos e a diferenca entre o limite superior e o niimero
de individuos. Expresse a taxa de aumento da populagao
em funcdo do tamanho da populacao. Quando tal taxa de
aumento é maxima?
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CAPITULO 3

Funcoes Exponenciais e
Logaritmicas

As fungées exponenciais, assim como as funcoes afins, possuem
forte relagdo com problemas envolvendo taxa de variagdo de
uma grandeza em relacdo a outra. Entretanto, diferentemente
da funcao afim, tal taxa nao serd constante. Fixada a varidvel
independente h e uma fun¢ao exponencial f, a variacdo corres-
pondente da varidvel dependente f(z + h) — f(x) é proporcional
ao valor da prépria varidvel dependente f(z) (crescimento ex-
ponencial), sendo a constante de proporcionalidade dependente
de h. Ou seja,
flz+h)
flz)

depende apenas de h, e ndo de x. Uma referéncia classica e
introdutéria no tema, pode ser obtida na referéncia (IEZZI
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3. Fungbes Exponenciais e Logaritmicas

DOLCE; MURAKAMI| [2013)).

Exemplo 3.0.1. Um exemplo classico é o da desintegragao
radioativa. Os dtomos de uma substancia radioativa (como
o rédio e o urdnio, por exemplo), tendem a se desintegrar,
emitindo particulas e transformando-se em outra substancia.
Com o passar do tempo, a quantidade da substancia original
diminui. Isto ocorre de tal modo que, em cada instante, a
quantidade de matéria que estd desintegrando naquele momento
(taxa de desintegracdo), é proporcional & massa da substancia
original que ainda resta. Ou seja, se designarmos por m = m(t)
a massa da substancia radioativa presente no corpo no instante
t, temos que m é uma funcdo mondtona injetiva (decrescente)
de t e m(t + h) — m(t) = g(h)m(t), ou ainda,

m(t+ h)

i =G0,

Assim, a perda relativa ocorrida apés o decurso do tempo h,
depende apenas de h e nao do instante inicial ¢. Veremos que as
tnicas fungbes com essas propriedades sdo as do tipo:

m(t) = ba' (no exemplo acima tem-se ainda 0 < a < 1).

Seja a um ntmero real positivo diferente de 1.

Definicao 3.1. A fungdo exponencial f : R — R de base
a, é a Gnica funcdo que satisfaz as seguintes propriedades
fundamentais:

(E1) Para quaisquer @,y € R, f(z +1) = f(z) - (1)
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(E2) f(1) =g

f(z) < f(y), quando a > 1

(E3) Se z <y, entao { f(x) > f(y), quando 0 < a < 1.

Devido a (E1) e (E2), f nao pode assumir o valor 0: Se, por
absurdo, existe zo € R tal que f(zg) = 0, entdo

f(z) = f(zo+ (¥ — 20)) = f(z0) - f(¥ —20) =0,V ER.

Isso é uma contradigdo com fato de f(1) = a # 0. Mais ainda:

=1 (3 +2)=1(3) 4 (2) = (D) >0

para todo z € R. Assim, diante das propriedades (E1) e (E2),
o contradominio de f pode ser considerado apenas os nimeros
reais positivos: R%. A vantagem disso ¢ que a funcdo f serd
sobrejetora (a demonstracio depende de ferramentas do Calculo
Diferencial e Integral). Com base nas propriedades (E1) — (E3)
e com um argumento similar ao apresentado para “Poténcias de
Expoente Real” anteriormente, conclui-se que

f(x) =a”, para todo x € R.
Como exemplo, considere n € N:
Fn) = F 414+ 1) = F(1) - F(1) - FO) = [FO" = a™.

Os demais casos seguem como acima.
Resumimos a seguir algumas das principais propriedades da
func¢do exponencial:
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1. A funcdo f: R — R dada por f(z) = a” é nao limitada
superiormente;

2. O gréfico da fungéo exponencial, f(z) = a®, é uma curva
continua no plano;

Figura 3.1: Gréfico da fungdo exponencial.
101 f(z) = a®

8,,

3. A fungao f:R — R% dada por f(z) = a” é injetora. Ou
seja, a*! = a®2 = 11 = x5 (argumento base para resolver
equagoes);

4. Além disso, f(x) = a® é sobrejetora, logo uma bijegdo entre
R e R%. Consequentemente, possui uma funcdo inversa
g :R% — R. Fixa-se g := log, (Notagao) e, assim,

y=log,z < a¥ =x.
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Ou seja, log, = é o expoente ao qual se deve elevar a base

a para obter o numero x. Tem-se ainda
a®%® = g ¢ log,(a¥) = y.
Quando a = e = 2,72, denota-se

log, x := Inz (Logaritmo Natural).

As principais propriedades dos logaritmos sao:

1.

2.

log, 1 =0;
log,a =1,
log, z =log,y < z=1y;

log, (zy) = log, x 4 log, y, para quaisquer z,y € R* ;

x . X
. log, ; = log, * — log, y, para quaisquer x,y € R ;

log, % = alog, ¥, para quaisquer x € R} e a € R;

1
log, x = %8 T (mudancga de base);

log, a
g(x) = log,x é crescente se a > 1 e decrescente se
0<a<l

Exemplo 3.0.2. Resolva a equagio 2* = 64.

117
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Solucdo: Desde que 64 = 25, tem-se
27 =20 = =6,
pois a fungdo exponencial é injetora.
Exemplo 3.0.3. Idem para 237~ = 32.
Solugao: Como 32 = 27,
29l =P =3 —1=5=2=2
Exemplo 3.0.4. Resolva a inequacio 776 < 1.

Solugao: Sabemos que log; 1 = 0 e que a funcdo logaritmica
de base a > 1 é crescente. Assim,

6
75“6<1=>5a:—6<0:>x<5.

Logo, o conjunto solugao da inequagao em questao sera o intervalo

S5

1
Exemplo 3.0.5. Resolva a equagdo 3* = 3 Usando as

propriedades da funcdo logaritmica, temos

1
3" = 5= T= logs 1 —logs 2 = —logs 2 =~ —0,631.

As fungdes exponenciais sdo, juntamente com as fungoes afins
e as quadraticas, os modelos matematicos mais utilizados para
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resolver problemas elementares. As fungées afins ocorrem em
praticamente todos os problemas durante os nove primeiros anos
do ensino bésico (por ex., problemas envolvendo proporcionali-
dade, equagdes, inequagdes, ...), enquanto fungoes quadraticas e
exponenciais aparecem nos trés dltimos anos (por ex., equagoes,
inequagoes, progressoes geométricas, matemética financeira, ...).
Uma vez deduzido que o modelo adequado para um determinado
problema é uma funcéo afim, quadratica ou exponencial, o trata-
mento matematico da questao nao oferece maiores dificuldades.
A grande questdo é como deduzir qual a funcdo matematica
apropriada para o problema em estudo. Por isso as caracteri-
zacOes apresentadas anteriormente, e a seguir, sao de grande
importancia.

Teorema 3.1 (Fungoes Exponenciais). Seja f : R — R uma
funcdo mondtona injetiva (isto é, crescente ou decrescente). As
seguintes afirmacoes sdo equivalentes:

1. f(nx) = [f(z)]™ para todo n € Z e todo x € R;
2. f(z) = a” para todo = € R, com a = f(1);

3. f(x+vy) = f(x) - f(y) para quaisquer z,y € R, isto é,
transforma soma em produto.

Teorema 3.2 (Func¢oes Tipo Exponencial). Seja g : R — R¥
uma funcdo monétona injetiva. Suponha que, para quaisquer
g(x +h) — g(x)

dependa apenas
9(x)

x,h € R, o acréscimo relativo
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g(1)

de h, mas ndo de z. Entéo, se b = ¢g(0) e a = W, tem-se
g

g(x) = ba® para todo = € R.
Para a funcao logaritmica, temos

Teorema 3.3. Seja g : R — R’ uma fungao monétona injetiva
(isto é, crescente ou decrescente) tal que g(xy) = g(z)+g(y) para
quaisquer z,y € R. Entdo existe a > 0 tal que g(z) = log, «,
para todo x € R.

A demonstracdo destes teoremas podem ser obtidas nas
referéncias (APOSTOL, [1991)), ou ainda (LIMA} 2014).

Exemplo 3.0.6. A lei de desintegragdo do elemento Radio no
tempo t > 0 é dada por M (t) = Ce*, onde M (t) é a quantidade
de Radio no tempo t, C' e k sdo constantes positivas. Se a metade
da quantidade inicial M (0) se desintegra em 1600 anos, qual é a
quantidade desintegrada em 100 anos?

Solugao: Sabendo que a metade da quantidade inicial se
desintegra em 1600 anos,

1 1
M(1600) = % = cetoook — € 1c00k _ 5 = 1600k =In (2> ,

2

ou seja,
In2
1 =—ln2=k=——-—.
600k n2= 1600

Assim, a quantidade restante ap6s 100 anos serd

M(100) = Cel00k — (. 9=100/1600 _ (7 9=1/16
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Com isso, a quantidade desintegrada é:
AM = M(100) — M(0) = C - 27/ _ ¢,
isto é,
AM =C (2*1/16 - 1) ~ 0,9576 — 1 ~ —0,0424.

Portanto, aproximadamente 4,24% da massa inicial se
desintegrou apds 100 anos.

3.1 Exercicios de Fixacao

1. Determine o valor de f(z) = 2% para z = —1,0, 1.
2. Calcule log,(8) e log;,(1000).
3. Se f(x) = e”, calcule f(0), f(1) e f(—1).

4. Verifique se a funcdo g(x) = logs(x) é crescente ou
decrescente.

5. Calcule um valor aproximado para 27 e 2¢.

6. Esboce os graficos das fungbes f : R — R abaixo:

a) f(z)=2"
b) f(z)=27"
¢) flz) =320
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3. Fungbes Exponenciais e Logaritmicas

Q) fla) =2
o fl) =2
f) fla) =2
&) flz) =20 3
W f)=3-(3)
7. Sabendo-se que os gréficos das fungdes f(z) = a® e

g(x) = 22 — 1 se intersectam em um ponto de abscissa 3,
determine o nimero a.

8. Resolva as seguintes equagdes exponenciais:

a) 2 =64

b) (V3)" = V81
1

c) 2% = T

d) 8 =0,25

e) 231 =32

f) 112045 =1

g) 81173¢ =27

h) 471 =g

i) (29)*t =4

)

122



3.1. Exercicios de Fixagéo

10.

11.

12.

13.

14.

Resolva a equagao exponencial

2171 4 21‘ + 2:IZ+1 o 2I+2 4 2:E+3 — 120 .

De forma similar, resolva as equagoes exponenciais:

a) 47 — 2% =56
b) 4*+1 —9.27 4+2=0
c) 97 +3"=90
d) 4 +67 =297
Resolva o sistema de equagoes { ;i +1: :13%;

Para que valores reais de m a equacdo 4* — (m — 2) - 2% 4+
2m + 1 = 0 admite pelo menos uma solugdo em R.

Resolva as seguintes inequagoes exponenciais:
27 > 128

3223 > 243

756 1

(073)3:2—2.1—8 >1

8§ < 2% <32

f) 4 < 8=l < 32

a

b

o

d

e

)
)
)
)
)
)

Use as aproximacoes log;,2 ~ 0,301, log;,3 ~ 0,477 ¢
log,, 5 ~ 0,699 para obter valores aproximados para:
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3. Fungbes Exponenciais e Logaritmicas

) logi9

) logq, 40

¢) logy, 200

) log;, 3000
) logy, 0,003
f) logy( 0,81

15. Se A = 5'°8252 determine o valor de A3.
16. Determine o valor de A € R tal que 4°824 + 24 — 2 = 0.
17. Se log, x = n e log, y = 6n, calcule {/x2%y.

18. Construa os graficos das fungoes:

a) f(z) =logyx

b) f(xz) = log, ||
¢) f(x) = |log, z|
d) f(z) =logy v

19. Determine o dominio das fungoes:

) 1) = logy(1 — 20)

b) f(x) = logs T

) (z) = logyy(a? + 2~ 12
Q) f(2) = 10g,.1 (247 52 +2)

20. Resolva as seguintes equacoes:
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3.1. Exercicios de Fixagéo

a

5% =4
1
b z

)

) 3

c)

d)

e)

f) 4*—-5.2"4+6=0
g) 47 + 6% =9

h) log,(3z — 5) = log, 7

i) logs(z? — 3z — 10) = logs (2 — 2z)

i) logg(z? + 3z —1) =2

) 2+ logsx logs _
logs x 1+ logsx

1) log, (22 +3) =2

J
k

21. Resolva as inequagoes:
a) log;(bx — 2) < logs 4
b) logs(z? — z) > logg o %
c) 1og%(2m2 —7x+4+5) <=2
d) (logsx)? —3loggx +2 >0

22. A populacio mundial em 1970 foi estimada em 3,7 x 10°
pessoas. A taxa de crescimento anual é aproximadamente
2%. Admitindo-se que a taxa de crescimento permaneca
constante, qual serd a populacdo mundial nos anos 1980,
1990 e 20007

125



3. Fungbes Exponenciais e Logaritmicas

23.

24.

25.

26.

27.

28.

126

Bidlogos afirmam, que sob condig¢bes ideais, o ntimero de
bactérias numa cultura cresce exponencialmente. Suponha
que existam inicialmente 2000 bactérias em uma certa
cultura e que existiram 6000 ap6s 20 min. Quantas
bactérias existirao apds 1 hora?

Uma populagao de coelhos cresce exponencialmente. Num
primeiro censo haviam 20 coelhos. Um ano apéds ja
haviam 50 coelhos. Obtenha uma férmula que determine a
quantidade de coelhos em funcéo do tempo ¢, medido em
anos.

Meia-vida de uma substancia radioativa é o tempo para
50% de uma amostra da substancia se deteriorar. Considere
que a quantidade remanescente de uma certa substancia
radioativa, apés t anos, é dada por Q(t) = Qe %003
Calcule a meia-vida da substancia.

O radio se deteriora exponencialmente. Sua meia-vida é
de 1960 anos. Quanto tempo levard para uma amostra de
50g de radio se reduzir a 5g?

O carbono-14 decai exponencialmente a uma taxa constante
de 0,0121%. Calcule a meia-vida do carbono-14.

Em algumas culturas, qualquer quantidade com cresci-
mento exponencial dupicara o seu valor, ou seja, aumentara
em 100%. Como sua taxa percentual de crescimento é cons-
tante, o tempo que a quantidade lavara para se duplicar é
também constante. Este periodo de tempo é chamado de
tempo de duplicagao.



3.1. Exercicios de Fixagéo

(a) Determine o tempo necessdrio para que uma popula-
cao de tartarugas, descrita pela fungao

P(t) =175 - (1,145)"

duplique seu tamanho inicial.

(b) Qual o tempo necessdrio para esta populacao quadru-
plicar seu valor inicial?

29. (UNIRIO/1994) Um explorador descobriu, na selva amazo-

30.

nica, uma espécie nova de planta e, pesquisando-a durante
anos, comprovou que o seu crescimento médio variava de
acordo com a férmula A = 40(1,1)*, onde a altura média A
¢ medida em centimetros e o tempo t em anos. Sabendo-se
que log;52 = 0,30 e log;y 11 = 1,04, determine:

a) a altura média, em centimetros, de uma planta dessa
espécie aos 3 anos de vida;

b) a idade, em anos, na qual a planta tem uma altura
média de 1,6m.

Em algumas situagdes, para expressar certas grandezas,
¢é mais conveniente empregar as chamadas escalas logarit-
micas do que as escalas lineares convencionais. Este é o
caso, por exemplo, da escala Richter de terremotos. Na
escala Richter, a intensidade I de um terremoto, expressa
em graus, € definida da seguinte forma

2 E
I= glogw (Eo> ;
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3. Fungbes Exponenciais e Logaritmicas

em que F representa a energia liberada pelo terremoto,
medida em kWh, e Ey = 10~ 3kWh.

a) Qual é a energia liberada por um terremoto de 3 graus
na escala Richter? E por um terremoto de 9 graus?

b) Qual é a relacdo entre a energia liberada por um
terremoto de grau k e a energia liberada por um
terremoto de grau k + 1 na escala Richter?
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CAPITULO 4

Funcoes Periodicas

As fungoes periddicas, surgem em diversos contextos do mundo
real. Elas sd@o fundamentais na descricado de fenémenos peridédi-
cos, isto é, que se repetem regularmente em intervalos de tempo
constante, tais como as variagoes diarias na temperatura da
atmosfera terrestre, batimentos cardiacos e outros ritmos biologi-
cos, péndulos e oscilagoes de ondas sonoras ou eletromagnéticas,
como pode ser visto de forma bésica na referéncia (DE LUCENA]
2020)), ou ainda via transformada de Fourier, como pode ser visto
em (JUNIOR |2006]).

Definicao 4.1. Seja T # 0. Diz-se que uma fungao f: R — R é
periddica de periodo T, se f(x +T) = f(z), para todo = € R.

Observacao 4.1. Por simplicidade, muitas vezes iremos nos
referir como f, a fungdo f: R — R.

Exemplo 4.0.1. Considere a fungdo f(z) = =z — [z], onde
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4. Funcgbes Periddicas

[z] :==max{n € Z ; n < z} é a funcio maior inteiro. Entéo, f ¢é
periddica de periodo T = 1, pois [z + 1] = [z] + 1.

Figura 4.1: Gréfico da funcdo f(x) = x — [z].
f(@)

o

Exemplo 4.0.2. Do mesmo modo, a funcdo g(z) =
1, sexeQ
0, se x € Q,

nulo.

é periddica de periodo T, para cada T € Q ndo

Figura 4.2: Grafico da funcao g.
g(x)
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4.1. Triangulo Retangulo

Teorema 4.1. Sejam T, ¢ € R ndo nulos. Se f é peridédica de
periodo T', entao:

e f também é periddica de periodo kT, para todo k € Z nao
nulo;

o A fungdo g : R — R dada por g(x) = f(cz), é periddica de

periodo —.
c

Observacao 4.2. Define-se o periodo fundamental de uma funcao
periédica f, como o menor periodo positivo de f. E muito
comum em Matematica usar apenas a expressao periodo para
designar o periodo fundamental.

As fungbes periddicas mais conhecidas sdo as fungoes
trigonométricas reais a valores reais

flx) =sinz, e g(x)=cosz,

e suas combinagbes, como pode ser vista em (DE LUCENA]
2020). Dessa forma, as fungoes periddicas também séo conhecidas
como funcgoes trigonométricas. Tais fungbes terdo maior
destaque ao longo desta secdo. Antes de definirmos as fungoes
trigonométricas, recordamos suas origens na geometria plana
(tridngulos e circunferéncia), como destacado em (IEZZI| 2013]).

4.1 Triangulo Retangulo

Inicialmente recorde que angulo é por definicdo a regiao
delimitada por duas semirretas orientadas que compartilham o
mesmo ponto de origem, chamado vértice.
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4. Funcgbes Periddicas

Figura 4.3: Angulo AOB
B

O A

As unidades de medida mais comuns para dngulos sdo grau,
z°, e o radiano (Sistema Internacional). Por definigdo, 1° cor-

responde a — do comprimento da circunferéncia (independente

do valor do raio), enquanto 1 rad corresponde a um arco de cir-
cunferéncia cujo comprimento é igual ao raio r da circunferéncia

(Figura[4.4).
Figura 4.4: Definicao de 1 rad.

A relagao entre grau e radiano é dada por:
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4.1. Triangulo Retangulo

360° — 27 rad
180° — wrad

Segue que

1rad = (360) ~ 57,3°.
2w

Vale destacar que a medida de um angulo (m(AOB)) é sempre
um numero real positivo de modo a satisfazer:

(i) dngulos congruentes tem sempre a mesma medida, e vice-
versa;

(ii) dizer que um angulo é maior do que outro significa que sua
medida é maior do que a do outro;

(iii) se m(AOB) é a medida do angulo AO:B e m(BOQ’) éa
medida do angulo BOC, entdo m(AOC) = m(AOB) +
m(BOC).

Figura 4.5: Soma de dngulos adjacentes.

C
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4. Funcgbes Periddicas

Observacao 4.3. Diz-se que dois 4ngulos sdo congruentes se,
sobrepostos um sobre o outro, todos os seus elementos coincidem.

Observacao 4.4. Um angulo pode ainda ter uma orientagao.
Para tanto considera-se um angulo como os ponteiros de um
relégio. Nesse caso, a orientagao é dita positiva se o arco gerador
do angulo foi construido no sentido anti-horario, e a orientagao
serd dita negativa se o arco foi construido no sentido horario
(sentido seguido pelos ponteiros de um relégio). Dessa forma
observa-se uma outra maneira de medir angulos em fungao da
nocio de horas (h), minutos (z') e segundos (y), conforme

abaixo:

, , 1\°
1° 60 =1he1 —
. H(ﬁo)

’ 1 1" 1 '
1 —60 1 —[—] .
()

Assim, para expressar a medida do dngulo 56°48'36" em grau
procede-se da seguinte forma,

56°48'36" = 56° + 48 + 36
. 48\ ° 36 \°
=007+ <60> + (3600)
— 56,81°,
onde aplicamos as relagoes acima usando "Regra de Trés"simples.
Um angulo de 90° ou il rad, é dito um angulo reto e um

angulo de 180° ou 7 rad, é dito um angulo raso.
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4.1. Triangulo Retangulo

Figura 4.6: Angulo reto e angulo raso.

Angulo reto Angulo raso

- ~

- \
’
\

180°
0 A Q P R

Entende-se como um tridngulo retidngulo, uma figura
plana formada por trés dngulos cujos vértices nao sao colineares,
sendo um deles um angulo reto. Tais dngulos sao entendidos
como os angulos internos da figura formada. Nesse sentido,
os trés segmentos gerados a partir dos vértices sao ditos lados
do tridngulo e, mais especificamente nesse caso, o lado oposto
ao angulo reto é chamado de hipotenusa e os demais lados
(adjacentes ao dngulo reto) de catetos.

Figura 4.7: Tridngulo retangulo.

C
hipotenusa
cateto oposto
0
A cateto adjacente B
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4. Funcgbes Periddicas

O resultado relacionado a tridngulos retdngulos mais conhe-
cido é o chamado Teorema de Pitagoras, resumido a seguir:

AC’ = 4B’ + BC,

onde XY indica o comprimento do segmento que parte do ponto
X e chega ao ponto Y.

Considerando o tridngulo retangulo acima, fixando-se o an-
gulo 6 = BAC e tendo em vista a nocao de semelhanca de
tridngulos (proporcionalidade), define-se as razdes trigonomé-
tricas:

cateto oposto BC

sin(f) = Thipotenusa = = (seno),
cateto adjacente ~AB
COS(@) = W = Aiic’ (COSSGHO),

cateto oposto ~ BC

tan(f) = ——————— = —
an(f) cateto adjacente ~ AB

(tangente).

in 0
Note que tanf = sl
cos

. Outras defini¢oes relevantes sao:

1

cot(f) = o (cotangente),
1

sec(f) = s (secante),
1

csc(f) = " (cossecante).
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4.1. Triangulo Retangulo

Como consequéncia do Teorema de Pitagoras, segue a chamada
Relacao Fundamental da Trigonometria:

(sin)? + (cos0)? = 1.

Esta relacdo origina a seguinte tabela, que apresentamos de
forma simplificada, e somente para alguns angulos mais usuais.

Tabela 4.1: Valores das fungées trigonométricas nos arcos
notaveis do 1° quadrante

Razido/ Angulo | 0° | 30° | 45° | 60° | 90°
1 2 3
sin 6 0 \gg é ? 1
cos 0 1 ? > | 3 0
tan ¢ 0 7 1 \f -
cot 6 — \gg 1 ﬁ 0
sec 1 ﬁ V2 z —
csc — 2 V2 % 1

Um ponto a ser destacado aqui é que as defini¢oes acima
fazem sentido apenas para dngulos com medida entre 0° e 90° (ou
/2 rad). No entanto, existem muitas situagdes onde necessita-se
calcular, por exemplo, cosf com 6 > 90°.
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4. Funcgbes Periddicas

Exemplo 4.1.1. Uma situagéo cléssica é a de calcular a medida
de um dos lados de um tridngulo conhecendo a medida dos outros
dois lados e do angulo formado pelos mesmos (4ngulo oposto
ao lado que queremos calcular). Um problema similar é o de
calcular a medida de um angulo, dado os trés lados do triangulo.

Figura 4.8: Lei dos Cossenos.

Para tais problemas tem-se a disposicao a chamada Lei dos
Cossenos:

a® =b? 4 ¢ — 2bccosb.
Nesse caso, em geral, o angulo 6 > 90°.

Exemplo 4.1.2. Importantes problemas na Fisica sdo relacio-
nados ao estudo de materiais elasticos, oscilagoes e sistemas
massa-mola (osciladores harmonicos). Considere a situagao apre-
sentada na figura abaixo. Nesse caso, o deslocamento da massa
presa a uma mola é regido pela Lei de Hooke, que estabelece
que a forca aplicada é proporcional ao deslocamento z = x(t),
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4.1. Triangulo Retangulo

Figura 4.9: Deslocamento de uma massa presa a uma mola.

SSSSSSSSSSSN
SNNAINNNNNNAY
NNNNNNNNNNNY

onde t > 0 representa a varidvel tempo.

Foldstica = —k=,

onde k£ depende do material da mola. Usando a 2 Lei de Newton,
temos que o deslocamento satisfaz a equagao diferencial

k
T+ —x =0,
m

. | k [ k
T = asin —t | + B cos —t ],
m m

com «, 8 € R constantes. Aqui novamente é necesséario calcular
seno e cosseno de angulos com medidas superiores a 90°.

e portanto,
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4. Funcgbes Periddicas

Dessa forma, a seguir as razdes trigonométricas serao
ampliadas para um intervalo maior, a saber, de 0° a 360° (ou
2w rad), e posteriormente para qualquer valor real (fungoes
trigonométricas).

4.2 Circunferéncia

Considerando uma circunferéncia unitéria (raio r = 1) centrada
na origem do plano coordenado

podemos reproduzir as razoes trigonométricas apresentadas no
tridngulo retdngulo de modo a considerar angulos maiores que
90°.

Figura 4.10: Ciclo trigonométrico.

Y

sin(@) F---->
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4.2. Circunferéncia

Para tanto, observe que pela relagdo fundamental da
trigonometria,

(sin€)* 4 (cos6)* =1,

é razoavel considerar uma circunferéncia unitaria centrada
na origem. Tal relacdo indica que para todo angulo €
entre 0° e 360°, os nimeros cosf e sinf sdo as coordenadas
de um ponto da circunferéncia em questdo. Dessa forma,
considerando as projegoes ortogonais de tal ponto sobre os eixos
coordenados (ver figura acima), fica determinado de modo tnico
um tridngulo retdngulo para o qual sdo aplicadas as razoes
trigonométricas anteriores. Tal construcdo define o chamado
ciclo trigonométrico.

No circulo trigonométrico o angulo 6 passa a ser encarado
como um angulo central (vértice no centro da circunferéncia).

Figura 4.11: Angulo central.
B

Isso permite estabelecer a relacao entre grau e radiano via
regra de trés, apresentada anteriormente. No que segue considera-
se apenas o radiano como unidade de medida para angulos.
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4. Funcgbes Periddicas

4.3 Funcoes Trigonométricas

Para ampliar a defini¢do das relagdes trigonométricas acima para
todo R, devemos associar a cada ntimero real ¢ um angulo. Isso
pode ser feito através de uma funcao especial que faz corresponder
a cada t € R um ponto (z,y) € C, onde C representa o ciclo
trigonométrico anterior, ou seja, C representa a circunferéncia
unitaria centrada na origem do plano coordenado. Tal funcao
E :R — C C R?, chamada Funcgao de Euler, é tal que

(i) £(0) = (1,0);

(ii) para t > 0, E(t) = (x(t),y(t)) serd o ponto final apds
percorremos sobre a circunferéncia C, a partir do ponto
(1,0), um arco de comprimento ¢t no sentido positivo do
ciclo trigonométrico (anti-horario);

(iii) para t < 0, E(t) = (z(t),y(t)) serd o ponto final apds
percorremos sobre a circunferéncia C', a partir do ponto
(1,0), um arco de comprimento |¢| no sentido negativo do
ciclo trigonométrico (horério);

Ou seja, a reta real é de certa forma “curvada” sobre o ciclo
trigonométrico.
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4.3. Funcgdes Trigonométricas

Figura 4.12: Funcao de Euler

Y
t
c E(t)
t>0
FE
—
t
0 T
t [ @0) = B0
t<O0
E(-t)
R

Considerando a funcao de Euler, as fungoes cos : R — R e
sin : R — R sdo definidas pondo-se, para cada t € R,

{ cost = z(t)

sint = y(t).

Desde que E(t) = E(t 4 2km), para todo t € R e todo
k € 7Z, temos que as fungoes seno e cosseno sao periddicas de
periodo 27. Aqui, |k| representa o ntimero de voltas em torno
do ciclo trigonométrico, sendo o intervalo [0, 27] correspondente
a primeira volta. Além disso, para todo ¢t € R vale

(cost)? + (sint)? = 1.

Com base na fun¢do da Euler é possivel justificar todas
as propriedades das fungoes trigonométricas, incluindo as de
simetria e a paridade de tais fungoes.
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4. Funcgbes Periddicas

Figura 4.13: Fungoes trigonométricas.

Y

y(t) 7Am(e) -

As demais fungbes trigonométricas sdo definidas combinando
as fungdes cos e sin como antes. Em particular,

Abaixo seguem os graficos das fungdes sin(t), cos(t) e tan(t).

Figura 4.14: Grafico das fungGes trigonométricas.

1 |sin( 1 heos(t)

: : t : /t>
-1 -1
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4.3. Funcgdes Trigonométricas

tan(t)

Note que a fungao seno é limitada, pois |sint| < 1 para todo
t € R. O mesmo vale para a funcdo cosseno. Por conta da
natureza da fungdo tangente, nos pontos 7/2 + km, (k € Z),
haverao singularidades pontuais, o que justifica a representacao
grafica acima.

Por fim, seguem algumas das férmulas de adi¢ao para seno
e cosseno, que sao usadas para simplificar expressoes e resolver
equagoes trigonométricas:

cos(a + b) = cos(a) cos(b) F sin(a) sin(b),

sin(a & b) = sin(a) cos(b) £ cos(a) sin(b).
Exemplo 4.3.1. Calcule cos(w/4 + 7/6). De fato, usando a

férmula acima,

o (54 5) = (D) (£) s (D)o ().
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4. Funcgbes Periddicas

Substituindo os valores:

(D)=L ()=

n(}) =5 () -3
sin(—)=—, sin(—=])=—.
4 2 6
Portanto:

cos (247 2 V3 V2 1_V6-V2
4 .

176 2 4

2 2

Mais detalhes sobre as féormulas de adicdo podem ser
encontrados nas referéncias (IEZZI, 2013), (CARMO, [2005)
e (GUIDORIZZI, [2013).

4.4 Exercicios de Fixacao

1. Determine o periodo da funcao f(x) = sin(2z).

2. Determine o periodo, a imagem e faga o grafico das funcgoes
abaixo:

a) f(z) =1+2cos3z,x € R
b) g(x) = 2cos (:c — g)

3. Encontre o valor méximo e minimo da funcdo g(x) =
cos(z) + 1.

4. Determine o dominio da fun¢do y = tanz.
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5. Calcule sin (%), cos (%) e tan (F).

6. Prove as identidades:

1 —tan?z .
(a) mil*?SlHZm.
(b) $—1+cosx.
cscx — cotx
(¢c) secx-cotx =cscx (v #nm/2).
(d) sec’z =1+tan’x .
)

e) csc2z =1+ cot?x

(
7. Mostre que:

1
20 = ————— .
(a) cos 1+ tan?6
tan? 6
b) sin?f = ——— .
(b) sin 1+ tan2 6

8. Determine a imagem e faca o grafico das fungdes abaixo:

(a) f(x) = |sinal
(b) f(z) =cos(z—%) .
(¢) f(x)=14cosz .

9. Determine o conjunto dos nimeros reais x para os quais

2
cosT = —%. Idem para sin (2x — g) = 0.

10. Determine a funcdo inversa de f(z) = sin(z) no intervalo
T

2.2
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11.

12.

148

Um observador em uma planicie vé ao longe uma montanha
segundo um angulo de 15° (dngulo formado por um ponto
no topo da montanha, o observador e o plano horizontal).
Apés caminhar uma distancia d em direcdo a montanha,
ele passa a vé-la segundo um angulo de 30°. Qual é a
altura da montanha?

Considere agora que o observador do problema anterior
encontrou um angulo « na primeira medicao e 8 na segunda
medi¢ao. Determine a altura da montanha em funcao de
a, Bed.
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